• Title/Summary/Keyword: APM1

Search Result 61, Processing Time 0.023 seconds

Open Software Learning Management System support SCORM (SCORM 지원 공개 소프트웨어 학습 관리 시스템)

  • Baek Yeong-Tae;Lee Se-Hoon
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.185-196
    • /
    • 2006
  • IIn this paper, we developed e-Leaning system based on open source software. We selected the Moodle that after compared the open source learning management systems. Moodle is APM(Apache, PHP, MySQL) based learning management system(LMS) support SCORM(Sharable Content Object Reference Model), a software package designed to help educators create quality online courses. One of the main advantages of Moodle over other systems is a strong grounding in social constructionist pedagogy. Also we integrated Moodle and legacy systems such as streaming service, webhard service, and short message service. Therefore this research showed that open source based e-Learning system include learning management system is stable and possible.

  • PDF

Study on Airborne Particulate Matter ($PM_{10}$) Monitoring in Urban and Rural Area by Using Gent SFU Sampler and Instrumental Neutron Activation Analysis (중성자 방사화분석법과 Gent SFU 샘플러를 이용한 도시의 농촌지역의 대기분지($PM_{10}$)관측 연구)

  • 정용삼;문종화;김선하;박광원;강상훈
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.453-467
    • /
    • 2000
  • The aim of this research is to collect and characterize fine particles (FPM:$\leq$2.5${\mu}{\textrm}{m}$) and coarse particles (CPM: 2.5~10${\mu}{\textrm}{m}$) using a low volume air sampler provided by the IAEA, at urban (Taejon) and rural area(Wonju) for a period of about two years(April 1996 to May 1998) and to promote a use of nuclear analytical techniques for air pollution studies. For the collection of airborne particulate matter (PM(sub)10), the Gent stacked filter unit sampler and polycarbonate membrane filters were employed. The concentration of trace elements in collected APM samples were determined byu instrumental Neutron Activation Analysis. For validation of the analytical data, internal quality control were implemented by using both the comparison of the analytical results of standard reference materials(NIST SRM 1648) and interlaboratory comparison for proficiency test (NAT-3). The standard uncertainty was less than 15% and Z-score of two samples were within $\pm$1. The monitoring of (PM(sub)10) mass concentration and elemental concentrations were carried out weekly. The average mass concentration of (PM(sub)10) in urban and rural areas were 59.2$\pm$36.5$\mu\textrm{g}$/㎥ and 41.4$\pm$23.7$\mu\textrm{g}$/㎥, respectively. To investigate the emission source, the enrichment factors were calculated for the fine and coarse particle fractions at two sites, respectively and these values were classified for anthropogenic and soil origin elements.

  • PDF

A Study on Structural Test and Derivation of Standard Finite Element Model for Composite Vehicle Structures of Automated People Mover (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 검증에 의한 유한요소 모델 도출 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Dae-Hwan
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.1-7
    • /
    • 2009
  • The vehicle structure of Automated People Mover(APM) made of aluminum honeycomb sandwich with WR580INF4000 glass-fabric epoxy laminate facesheets was evaluated by structural test and finite element analysis. The test of the vehicle structure was conducted according to JIS E 7105. The structural integrity of vehicle structure was evaluated by stress, deflection and natural frequency obtained from dial-gauge and acceleration sensor. And the proposed finite element models were compared with the results of structural test. The results of finite element analysis showed good agreement with those of structural test. Also, in order to improve the stiffness of vehicle structure, the modified underframe model with reinforced side sill was proposed in design stage. The composite vehicle structures with modified underframe model had the improved structural stiffness about 44%.

Physico-chemical Characteristics of Submicron Aerosol at West Inflow Regions in the Korean Peninsula III. Physical-Chemical Behavior and Long-range Transport of PM1 (한반도 서부유입권역에서 대기 중 에어로졸 성분의 물리·화학적 특성 연구 III. 화학적 거동 및 장거리 이동)

  • Park, Taehyun;Ahn, Junyoung;Choi, Jinsoo;Lim, Yongjae;Park, Jinsoo;Kim, Jeongho;Oh, Jun;Lee, Yonghwan;Hong, Youdeog;Hong, Jihyung;Choi, Yongjoo;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.124-138
    • /
    • 2017
  • Physico-chemical measurement of non-refractory submicron particles($NR-PM_1$) was conducted in Baengnyeong Island, Korea using Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) from 2012 to 2014. Organics and ammoniated sulfate were dominant species in $NR-PM_1$. The organics was found to have similar fractions(approximate 40%) of $NR-PM_1$ during the summer and winter, while the sulfate fractions of $NR-PM_1$ were calculated to be approximately 47% and 31% for the summer and winter, respectively, suggesting the possibility that particles provide non-acidic surfaces for condensation of nitric acid in the winter. The nitrate fractions of approximate 4% and 20% of $NR-PM_1$ were observed in August (summer) and November (winter), respectively, resulting that the relatively low concentration of sulfate in $NR-PM_1$ provided a non-acidic surface for nitric acid condensation and formation of particulate ammoniated nitrate is favored thermodynamically in winter. The new particle formation (NPF) event and particle growth rate were analyzed for each month in 2014 using Scanning Mobility Particle Sizer(SMPS). The Percent of NPF events was the highest in winter, but NPF event was not observed during summer due to relatively high temperature and frequent rainfall. The average particle growth rate was 3.5 nm/h and the highest particle growth rate was 5.5 nm/h in May. We observed the long-range transport of the anthropogenic sulfate from the East Asia during the intensive monitoring period of November between Qingdao and Baengnyeong Island in 2013. The relatively high concentrations of m/z 60 measured in HR-ToF-AMS was observed in May and June at Baengnyeong Island, suggesting the possibility of the influence of biomass burning from the East Asia to the Korean Peninsula.

A Study on Chemical Characteristics of Aerosol Composition at West Inflow Regions in the Korean Peninsula I. Characteristics of PM Concentration and Chemical Components (한반도 서부유입권역에서 대기 중 에어로졸 성분의 화학적 특성 연구 I. PM 농도 및 화학 성분 특성)

  • Choi, Jin-Soo;Kim, Jeong-Ho;Lee, Tae-Hyoung;Choi, Yong-Joo;Park, Tae-Hyun;Oh, Jun;Park, in-Soo;Ahn, Joon-Young;Jeon, Ha-Eun;Koo, Youn-Seo;Kim, Shin-Do;Hong, You-Deog;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.469-484
    • /
    • 2016
  • HR-ToF-AMS was applied for a seasonal and size-distributional measurements for inorganic ($SO{_4}^{2-}$, $NO_3{^-}$, $NH_4{^+}$, $Cl^-$) and organic components in Baegryung Island Super Site. The average concentration of $PM_{1.0}$ remarks $12.9{\mu}g/m^3$ while $14.5{\mu}g/m^3$ in Spring time, $14.2{\mu}g/m^3$ in Winter, $13.1{\mu}g/m^3$ in Summer and $9.86{\mu}g/m^3$ in Autumn. The mass of measured $PM_{1.0}$ shows 54.6% of $PM_{2.5}$ which is similar to those of Beijing and Lanzhou, China. The highest portion of Chemical composition is $SO{_4}^{2-}$ marking 41.0%, 31.8% by organics, 13.5% by $NH_4{^+}$, 12.8% by $NO_3{^-}$ and 1% by $Cl^-$. In every seasons, except winter, $SO{_4}^{2-}$ remarks the highest level, organic components take place the highest in winter time. The size-distribution of $PM_{1.0}$ components scattered at accumulation mode of 200 nm~800 nm which means the influence of primary emission is low. In case of air stream from the industrialized area of Sandung, Shanghai, China, the concentrations of such components were distributed a bit higher.

A Study on Chemical Characteristics of Aerosol Composition at West Inflow Regions in the Korean Peninsula II. Characteristics of Inorganic Aerosol Acidity and Organic Aerosol Oxidation (한반도 서부유입권역에서 대기 중 에어로졸 성분의 화학적 특성 연구 II. 입자의 산성도 및 산화 특성)

  • Choi, Jin-Soo;Kim, Jeong-Ho;Lee, Tae-Hyoung;Choi, Yong-Joo;Park, Tae-Hyun;Ahn, Joon-Young;Park, Jin-Soo;Kim, Hyun-Jae;Koo, Youn-Seo;Kim, Shin-Do;Hong, You-Deog;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.485-500
    • /
    • 2016
  • We examined acidity state of inorganic aerosol and oxidation state of organic aerosol by High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Baengnyeong Super site from Jan 2012 to Dec 2013. Additionally, we carried out the analysis for the aerosol component group of organic matter ($C_xH_y$, $C_xH_yO_1$, $C_xH_yO_z$, $C_xH_yO_zN_p$) and elemental composition to calculate H/C, O/C, N/C, OM/OC and identify the oxidation state. The aerosol chemical composition in this study is dominated by sulfate ($SO_4{^{2-}}$), nitrate ($NO_3{^-}$) plays a smaller role in aerosol acidity. Ammonium ($NH_4{^+}$) was found in a formation of $(NH_4)_3H(SO_4)_2$. However, the binding formations of $NH_4NO_3$ and $NH_4Cl$ increase in the winter. $C_xH_yO_1$ indicating the oxidized state of $PM_{1.0}$ has the highest ratio of 41% while $C_xH_y$ indicating the non-oxidized state has a lower ratio of 36%, meaning that the oxidation level of $PM_{1.0}$ in Baengnyeong Island is high. The ratio between H/C and O/C was 1.33 and 0.78 respectively, showing the characteristic of LV-OOA (Low volatility-Oxygenated Organic Aerosol). Acidic and oxidized aerosols sampled during this field study were largely anthropogenic in origin from Chinese continent and photochemically aged.

Organoleptic Sweetness of Aspartame as Affected by Temperature, pH, Salt and Quinine (아스파탐의 단맛에 온도, pH, 소금, quinine이 미치는 영향)

  • Chung, Nam-Yong;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.162-168
    • /
    • 1996
  • Effects of temperature, pH and addition of NaCl and quinine on sweetness and recognition threshold of aspartame were investigated. Changes in flavor of some foods were also studied when aspartame was added. The sweetness of 0.02% aspartame, the equi-sweetness of 4.3% sugar, was organoleptically evaluated by multiple comparison test at variouse range of temperature ($4^{\circ}$, $20^{\circ}$, $40^{\circ}$, $60^{\circ}$ and $80^{\circ}C$), pH (3.0, 4.5, 6.0 and 7.5), NaCl (0.5, 1.0, 1.5 and 2.0%) and quinine (0.001, 0.003 and 0.005%). The highest sweetness was obtained at $20^{\circ}C$ and pH 3.0-4.5. Addition of NaCl at 0.5% level showed the highest sweetness which was decreased thereafter. The sweetness was significantly decreased by the addition of quinine. The recognition threshold of aspartame was the lowest at $20^{\circ}C$ and pH 3.0-4.5. Lower in bitterness and higher In ginseng flavor were noted in ginseng tea with aspartame than in that without aspartame. Improved roasted flavor and decreased undesirable odor and taste were resulted in soymilk with the addition of aspartame. The flavors of orange, apple and strawberry were enhanced by aspartame in orange juice, apple juice and strawberry juice, respectively.

  • PDF

Inter-comparison of Two Aethalometers for Aerosol Black Carbon Measurements (대기 에어로졸 검댕입자 측정을 위한 두 aethalometer의 상호비교)

  • Jung, Jung-Hoon;Park, Seung-Shik;Yoon, Kwan-Hoon;Cho, Sung-Yong;Kim, Seung-Jai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.201-208
    • /
    • 2011
  • Recently, a real-time, pocket-sized aethalometer (microAeth$^{(R)}$ model AE51) has been developed by Magee Scientific Inc. for measuring the concentration of black carbon in the atmosphere. In this study, two aethalometers, models AE-16 and AE-51, which measure the optical absorption of carbon particles at infrared 880 nm, were operated at time interval of 5-min between January 9 and February 10, 2010 at an urban site of Gwangju, to compare the accuracy of black carbon (BC) concentrations reported from the AE-51 model and to investigate reasonable sampling time of filter media in the AE-51. The air samples in the AE-51 and AE-16 models are collected on T60 (Teflon coated glass fiber) filter media (filter spot area: 0.07 $cm^2$) and quartz fiber roll-tape filter (filter spot area: 1.67 $cm^2$), respectively. Real-time measurement results indicate that when the filters were clean, the AE-51 BC was greater than or similar to the AE-16 BC data. However as the filter spots become darker, the AE-16 BC concentrations were higher than the AE-51 BC data and the difference in the BC concentrations from two AE models becomes gradually increased. Relative error in the AE-51 and AE-16 BC concentrations showed significance difference depending on used time of the filter in the AE-51 model, weather pattern, levels of air pollution, etc, ranging from 11.5% (used time of the filter in AE-51: 1,595 min) to 52.5% (used time of the filter in AE-51: 2,085 min). When considering the used time of one filter ticket in the AE-51 model and difference (or relative error %) between AE-16 and AE-51 BC concentrations, it is recommended that the standard sampling time per one filter ticket within the AE-51 model be less than approximately 24 hr (1,440 min) under the normal weather conditions except for severe haze and mist events.

Estimation of PM2.5 Correction Factor for Optical Particle Counter in Ambient Air (대기환경에서 광산란 미세먼지 측정기의 PM2.5 보정계수 산정)

  • Kim, Jong Bum;Kim, Danbi;Noh, Sujin;Yoon, Kwan Hoon;Park, Duckshin;Lee, Jeong Joo;Kim, Jeongho
    • Particle and aerosol research
    • /
    • v.16 no.2
    • /
    • pp.49-59
    • /
    • 2020
  • Various devices have been developed to the measurement of particulate matter pollutants, and Optical Particle Counter (OPC) that can be easily and quickly measured is widely used lately. The measured value by OPC is converted to weight concentration using the correction factor (CF). The calculation of CF is very important to improve the reliability and accuracy of OPC. In this study, the CF calculation study of light scattering laser photometer (model 8533, TSI) was carried out to measure in the atmospheric environment using 2 gravimetric devices and 3 light scattering laser photometer devices. Regression analysis and Tukey tests were used to significance the test of measurement devices. Measurements were carried out twice. There was a comparative analysis of measurement data between light scattering laser photometer and gravimetric devices in 1st measurement, and then the Evaluation of PM2.5 concentration corrected by CF performed in 2nd measurement. As a result of the significance analysis between light scattering laser photometer and gravimetric devices, the correlation between the same method was high, but the correlation between different methods was low. CF was calculated as 0.4258 based on the measurement results, and it is a similar level to previous studies at home and abroad. It is expected that these results can be used as basic data in the future study for air quality measurement research using light scattering laser photometer. Also, in order to improve the accuracy of the measurement techniques and the development of technology in the atmospheric environment, CF calculation research should be conducted continuously.

A Study on the Characteristics of PM1.0 Chemical Components Using a Real-time Aerosol Mass Spectrometer (실시간 에어로졸 질량분석기를 이용한 PM1.0의 화학적성분의 특성에 관한 연구)

  • Park, Jinsoo;Choi, Jinsoo;Kim, Hyunjae;Oh, Jun;Sung, Minyoung;Ahn, Joonyoung;Lee, Sangbo;Kim, Jeongho
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.485-494
    • /
    • 2018
  • This study aims to identify the characteristics of oxidation and chemical composition of PM in winter season, 2017 at Incheon area. The mean concentration of air pollutants were $46{\pm}22{\mu}g/m^3-PM_{10}$, $29{\pm}18{\mu}g/m^3/-PM_{2.5}$, $5{\pm}3ppb-SO_2$, $0.56{\pm}0.24ppm-CO$, $21{\pm}13ppb-O_3$ and $28{\pm}17ppb-NO_2$, respectively. The dominant ion of the $PM_{1.0}$ chemical component were organic with $3.2{\mu}g/m^3$ and nitrate with $1.9{\mu}g/m^3$. The day and night variation of the $PM_{1.0}$ chemical components was higher in nighttime than those of daytime. The averaged nitrate oxidation rate (SOR) was 0.06 and sulfate oxidation rate was 0.11 during the field campaign. In the high mass loading period, nitrate oxidation rate (NOR) was up to 0.6 and also the nitrate in $PM_{1.0}$ was increased. The averaged ratio of $NO_x/SO_2$ was 8.7 and nitrate/sulfate was 3.1, respectively. In this results, the nitrate component in $PM_{1.0}$ was influenced by NOx from the stationary source as power plant and the mobile source around the measurement site.