• Title/Summary/Keyword: API-X70

Search Result 35, Processing Time 0.027 seconds

Effect of Microstructure on the Strain Aging Properties of API X70 Pipeline Steels (API X70 라인파이프 강재의 변형 시효 특성에 미치는 미세조직의 영향)

  • Lee, Seung-Wan;Im, In-Hyuk;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.702-708
    • /
    • 2018
  • This study deals with the effect of microstructure factors on the strain aging properties of API X70 pipeline steels with different microstructure fractions and grain sizes. The grain size and microstructure fraction of the API pipeline steels are analyzed by optical and scanning electron microscopy and electron backscatter diffraction analysis. Tensile tests before and after 1 % pre-strain and thermal aging treatment are conducted to simulate pipe forming and coating processes. All the steels are composed mostly of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite. After 1 % pre-strain and thermal aging treatment, the tensile test results reveal that yield strength, tensile strength and yield ratio increase, while uniform elongation decreases with an increasing thermal aging temperature. The increment of yield and tensile strengths are affected by the fraction of bainitic ferrite with high dislocation density because the mobility of dislocations is inhibited by interaction between interstitial atoms and dislocations in bainitic ferrite. On the other hand, the variation of yield ratio and uniform elongation is the smallest in the steel with the largest grain size because of the decrease in the grain boundary area for dislocation pile-ups and the presence of many dislocations inside large grains after 1 % pre-strain.

실제크기 배관 피로시험에 의한 손상배관의 수명평가

  • 김철만;백종현;김영표;김우식
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.403-406
    • /
    • 2002
  • 가정용 및 산업용으로 사용되고 있는 천연가스는 70kg/cm1의 압력으로 지하에 매설되어 있는 API 5L X65재질의 배관을 통하여 공급되고 있다 생산기지에서 공급되는 압력이 70kg1cmr이지만 가스소비량에 따라 계절별 및 월별 가스 내압이 변화되고 있다. 하루에도 최대 2회정도 주기적으로 변화를 보이고 있다. 본 연구에서는 API 5L X65등급의 가스배관 모재 및 용접부에 일정한 형태의 가우지 결함을 가공하여 현재 사용중인 내압 조건과 유사한 내압변화를 재현하여 피로수명을 평가하였다.(중략)

  • PDF

Yield strength estimation of X65 and X70 steel pipe with relatively low t/D ratio

  • Kim, Jungho;Kang, Soo-Chang;Kim, Jin-Kook;Song, Junho
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.151-164
    • /
    • 2021
  • During the pipe forming process, a steel plate undergoes inelastic behavior multiple times under a load condition repeating tension and compression in the circumferential direction. It derives local reduction or increase of yield strength within the thickness of steel pipes by the plastic hardening and Bauschinger effect. In this study, a combined hardening model is proposed to effectively predict variations of yield strength in the circumferential direction of API-X65 and X70 steel pipes with relatively low t/D ratio during the forming process, which is expected to experience accumulated plastic strain of 2~3%, the typical Lüder band range in a low-carbon steel. Cyclic tensile tests of API-X65 and X70 steels were performed, and the parameters of the proposed model for the steels were calibrated using the test results. Bending-flattening tests to simulate repeated tension and compression during pipe forming were followed for API-X65 and X70 steels, and the results were compared with those by the proposed model and Zou et al. (2016), in order to verify the process of material model calibration based on tension-compression cyclic test, and the accuracy of the proposed model. Finally, parametric analysis for the yield strength of the steel plate in the circumferential direction of UOE pipe was conducted to investigate the effects of t/D and expansion ratios after O-forming on the yield strength. The results confirmed that the model by Zou et al. (2016) underestimated the yield strength of steel pipe with relatively low t/D ratio, and the parametric analysis showed that the t/D and expansion ratio have a significant impact on the strength of steel pipe.

Effect of Heat Input of Outside Weld on Low Temperature Toughness of Inside Weld for Multiple Electrode SA Welded API 5L X70 with Sour Gas Resistance (내부식용 API 5L X70 다전극 SAW 용접부의 내면 저온인성에 미치는 외면 입열의 영향)

  • An, Hyun-Jun;Lee, Hee-Keun;Park, Young-Gyu;Eun, Seong-Su;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.93-101
    • /
    • 2014
  • This study aims to investigate the effect of heat input of outside SAW weld on low temperature toughness($-20^{\circ}C$) of inside SAW weld for API 5L X70 with sour gas resistance. As increasing heat input of the outside weld, low temperature toughness of the inside weld was decreased. Especially, in spite of the same heat input, the value of low temperature toughness was fluctuated. On the basis of fracture and microstructure analysis, the low temperature toughness is correlated with the fracture area ratio of shear lips and four kinds of fracture sections. These sections were divided with size and shape of dimple correlated with grain boundary ferrite and cleavage correlated acicular and polygonal ferrite in grain. Therefore, it was seen that these sections were two of final solidification area in the inside weld and the outside weld, no reheated zone and reheated zone in the inside weld. In conclusion, it is thought that the difference of low temperature toughness at the same heat input is due to the fact that each of impact test specimens could have the different microstructure, even though the notch was machined under the error tolerance of 1mm. It is because the final solidification area of the inside weld is very narrow.

Effect of Molybdenum Addition and Specimen Orientation on Microstructure and Mechanical Properties of API X70 Linepipe Steels (Mo 첨가 및 시편 방향에 따른 API X70 라인파이프강의 미세조직과 기계적 특성)

  • Dong-Kyu Oh;Seung-Hyeok Shin;Byoungchul Hwang
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.251-256
    • /
    • 2023
  • This study aims to examine the correlation between microstructures and the mechanical properties of two high-strength API X70 linepipe steels with different specimen directions and Moaddition. The microstructure of the Mo-added steel has an irregularly shaped AF, GB matrix with pearlite because of the relatively large deformation in the non-recrystallization temperature region, while that of the Mo-free steel shows a PF matrix with bainitic microstructure. In the Mo-added steel, the M/A (martensite-austenite) in granular bainite (GB) and pearlite act as crack initiation sites with decreased upper shelf energy and an increased ductile to brittle transition temperature (DBTT). Regardless of Mo addition, all of the steels demonstrate higher strength and lower elongation in the T direction than in the L direction because of the short dislocation glide path and ease of pile-up at grain boundaries. In addition, the impact test specimens with T-L direction had a lower impact absorbed energy and higher DBTT than those with the L-T direction because the former exhibit shorter unit crack path compared to the latter.

The Effects of Welding Wires on the Weldabilities of API X-100 with Laser-Arc Hybrid Welidng (API X-100의 레이저-아크 하이브리드 용접성에 미치는 용접와이어의 영향)

  • Kim, Sungwook;Lee, Mok-Young
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.7-12
    • /
    • 2014
  • In this study, API-X100 steel pipes were welded with various kinds of welding wires in the laser-arc hybrid welding process. 10kW fiber laser source was combined to MIG arc welding process. API X-100 steel of base metal was of 16.9mm thickness, and butt welding applied. After welding, full penetration weld was acquired by 1-pass welding. A root porosity and the lack of fusion was observed in some welding conditions. By the mixing the melted wire, acicular ferrite, polygonal ferrite, pro-eutectoid, aligned side plate, and bainite structures were observed at the weld metal. From the observation of hybrid weld, unmixed zone had more Ni and Cr. The unmixed zone was a 1/3 area of the weld metal. As the mechanical test of the hybrid welding, tensile test and impact test applied. From the tensile test, all of the welding except SM70S was fractured at the base metal. The result of the impact test at -30 degree C led 60J~320J of the absorbed energy. The result of the low-absorbed energy might be from the coarse equiaxed structures of the weld metal.

Developing Trend of High Strength and Good Toughness Linepipe Steel (고강도-고인성 라인파이프강 개발 동향)

  • Yoo, Jang-Yong;Kang, Ki-Bong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.216-221
    • /
    • 2004
  • Linepipe steels with a low carbon acicular ferrite microstructure have been recently developed to accommodate the current transportation condition of the gas and oil industry, and they are finally applied to West- East pipeline project in China. By adopting acicular microstructure, both better formability and better toughness could be obtained due to low yield ratio and fine grained microstructure. Mechanical properties of pipe are not greatly different from those of base plates or hot coils with a microstructure of acicular ferrite. Merits of introducing higher strength steels are well known, i.e., reducing the gauge of pipe and the material cost, increasing the welding speed and decreasing construction cost because of reducing the construction period. Threfore, gas and oil industry has required higher strength steel than APIX70 grade steel. Under this background, API-X80 steel has been developed and shall be applied to the several projects. In this paper, developing stage of API-X80 steel is also presented and discussed.

  • PDF

Effects of Specimen Thickness and Notch Shape on Fracture Mode Appearing in Drop Weight Tear Test (DWTT) Specimens of API X70 and X80 Linepipe Steels (API X70 및 X80 라인파이프강의 DWTT 시편 파괴 형태에 미치는 시편 두께와 노치 형태의 영향)

  • Hong, Seokmin;Shin, Sang Yong;Lee, Sunghak;Kim, Nack J.
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.705-716
    • /
    • 2010
  • Effects of specimen thickness and notch shape on fracture mode appearing in drop weight tear test (DWTT) specimens of API X70 and X80 linepipe steels were investigated. Detailed microstructural analysis of fractured DWTT specimens showed that the fractures were initiated in normal cleavage mode near the specimen notch, and that some separations were observed at the center of the fracture surfaces. The Chevron-notch (CN) DWTT specimens had broader normal cleavage surfaces than the pressed-notch (PN) DWTT specimens. Larger inverse fracture surfaces appeared in the PN DWTT specimens because of the higher fracture initiation energy at the notch and the higher strain hardening in the hammer-impacted region. The number and length of separations were larger in the CN DWTT specimens than in the PN DWTT specimens, and increased with increasing specimen thickness due to the plane strain condition effect. As the test temperature decreased, the tendency to separations increased, but separations were not found when the cleavage fracture prevailed at very low temperatures. The DWTT test results, such as upper shelf energy and energy transition temperature, were discussed in relation with microstructures and fracture modes including cleavage fracture, shear fracture, inverse fracture, and separations.

Characteristics of Sulfide Stress Corrosion Cracking of High Strength Pipeline Steel Weld

  • Chang, Woong-Seong;Yoon, Byoung-Hyun;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-86
    • /
    • 2004
  • The sulfide stress corrosion cracking (SSCC) resistance of API X70 grade steel weldment has been studied using SSCC test in NACE TM-O177 method A. Also, microstructures and hardness distribution of weldment was investigated. The microstructure of SAW joint composed ferrite, pearlite and some MA constituent. Instead of hardening in CGHAZ, softening on the HAZ near base metal occurred. The low carbon TMCP type steel used for SAW showed softening behaviour in the HAZ adjacent to base metal, which was known to be closely related with the SOHIC (stress oriented hydrogen induced cracking). The SSC testing revealed that the API X70 SAW weld was suitable for sour service, satisfying the NACE requirements. By suppressing softening in the ICHAZ region, the SSCC resistance of low carbon TMCP steel welded joints could be more improved.

A Study on the Sensitivity to Pressure Reversal fracture with ERW Variables in Hot coil API-X70 (열연 API-X70 강재의 ERW 조건에 따른 피로파괴 감수성 고찰)

  • 홍현욱;김충명;이종봉
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.152-153
    • /
    • 2004
  • A pressure reversal is where ERW pipes fail at an applied pressure lower than one experienced previously. The susceptibility to pressure reversals of ERW joints has been investigated by varying heat input in the range of 230-268㎾ power and seam annealing temperature of 850-970$^{\circ}C$. The application of repeated loading to notched three point bend specimens was used in this study. There was no occurrence of reversals in all the condition investigated. Furthermore, the bond line ductility is found to be satisfactory. These results can be explained by the fact that a bond line free from defects is successfully obtained from a wide range of ERW conditions.

  • PDF