• Title/Summary/Keyword: API grade steel

Search Result 13, Processing Time 0.024 seconds

The Influence of Microstructure on the Bauschinger Effect in X80 Grade API Steel (X80급 API 강의 바우싱거 효과에 미치는 미세조직의 영향)

  • Park, J.S.;Kim, D.W.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.118-125
    • /
    • 2006
  • API steel is used for line-pipe to transport the oil and natural gas. As the recent trends in the development of API steel are towards the use of larger diameter and thicker plate, many researches have been studied to achieve higher strength, higher toughness and lower yield ratio in API steel. However, the strength of API steel after pipe forming is changed depending on the competition of the Bauschinger effect and work hardening which are affected by the strain history during pipe forming process. So, the purpose of this study is to investigate the influence of microstructure on the Bauschinger effect for API steel. To change the microstructure of API steel we have changed the hot rolling condition and the amounts of V and Cu addition. The compression-tensile test and the microstructure observation by OM and TEM were conducted to investigate the yield strength drop and the correlation between the Bauschinger effect and microstructure of API steel. The experimental results show that the increase of polygonal ferrites volume fraction increases the Baushcinger effect due to the back stress which comes from the increase of mobile dislocation density at polygonal ferrite interior during the compressive deformation. The hot rolling condition was more effective on the Bauschinger effect in API steel than the small amount of V and Cu addition.

Characteristics of HAZ Toughness and Cold Crack Susceptibility of Heavy Thickness API 2W Gr. 50 Steel for Offshore Structures (해양구조물용 극후물 API 2W Gr. 50강의 HAZ 인성 및 저온균열 감수성)

  • 홍현욱;김충명
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.32-33
    • /
    • 2003
  • The evaluation of HAZ toughness and cold crack susceptibility of 90mm thickness API 2W Grade 50 steel has been made in accordance with API RP 2Z as preproduction qualification test to be certified as il steel supplier from Shell International E & P. It was shown that the steel has superior HAZ toughness; CTOD value for CGHAZ more than 1.5mm at -10$^{\circ}C$, CVN absorbed energy more than 150J at -60$^{\circ}C$. Additionally, no generation of cold cracks was observed at 0.7kJ/mm even without preheating condition. These excellent results are due to the extremely low hardenability in HAZ of the steel.

  • PDF

A Study on the Fatigue Life of Large-Scale Tubular K-joints (대형 Tubular K-Joint의 피로수명에 관한 연구)

  • Im, Sung-Woo;Chang, In-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • Large-scale tests of welded tubular K-joint sunder balanced in-plane bending braces were carried out to observe the fatigue behavior of the API 2W Gr.60 steel plate produced by POSCO. Toe grinding and weld profiling were used to improve the fatigue life of a tubular K-joint. The effects of the steel grade and chord wall thickness on the fatigue life were also investigated. The present results were compared with the UK DEn design curve.

Developing Trend of High Strength and Good Toughness Linepipe Steel (고강도-고인성 라인파이프강 개발 동향)

  • Yoo, Jang-Yong;Kang, Ki-Bong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.216-221
    • /
    • 2004
  • Linepipe steels with a low carbon acicular ferrite microstructure have been recently developed to accommodate the current transportation condition of the gas and oil industry, and they are finally applied to West- East pipeline project in China. By adopting acicular microstructure, both better formability and better toughness could be obtained due to low yield ratio and fine grained microstructure. Mechanical properties of pipe are not greatly different from those of base plates or hot coils with a microstructure of acicular ferrite. Merits of introducing higher strength steels are well known, i.e., reducing the gauge of pipe and the material cost, increasing the welding speed and decreasing construction cost because of reducing the construction period. Threfore, gas and oil industry has required higher strength steel than APIX70 grade steel. Under this background, API-X80 steel has been developed and shall be applied to the several projects. In this paper, developing stage of API-X80 steel is also presented and discussed.

  • PDF

Evaluation of Grooving Corrosion and Electrochemical Properties of H2S Containing Oil/Gas Transportation Pipes Manufactured by Electric Resistance Welding

  • Rahman, Maksudur;Murugan, Siva Prasad;Ji, Changwook;Cho, Yong Jin;Cheon, Joo-Yong;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.109-115
    • /
    • 2018
  • Electrical Resistance Welding (ERW) on a longitudinal seam-welded pipe has been extensively used in oil and gas pipelines. It is well known that the weld zone commonly suffers from grooving corrosion in ERW pipes. In this paper, the grooving corrosion performances of API X65 grade non-sour service (steel-A) and API X70 grade sour gas resistant (steel-B) steel electrical resistance welding pipelines were evaluated. The microstructure of the bondline is composed of coarse polygonal ferrite grains and several elongated pearlites. The elongated pattern is mainly concentrated in the center of the welded area. The grooving corrosion test and electrochemical polarization test were conducted to study the corrosion behavior of the given materials. A V-shaped corrosion groove was found at the center of the fusion zone in both the steel-A and steel-B ERW pipes, as the corrosion rate of the bondlines is higher than that of the base metal. Furthermore, the higher volume fraction of pearlite at the bondline was responsible for the higher corrosion rate at the bondline of both types of steel.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Characteristics of Sulfide Stress Corrosion Cracking of High Strength Pipeline Steel Weld

  • Chang, Woong-Seong;Yoon, Byoung-Hyun;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-86
    • /
    • 2004
  • The sulfide stress corrosion cracking (SSCC) resistance of API X70 grade steel weldment has been studied using SSCC test in NACE TM-O177 method A. Also, microstructures and hardness distribution of weldment was investigated. The microstructure of SAW joint composed ferrite, pearlite and some MA constituent. Instead of hardening in CGHAZ, softening on the HAZ near base metal occurred. The low carbon TMCP type steel used for SAW showed softening behaviour in the HAZ adjacent to base metal, which was known to be closely related with the SOHIC (stress oriented hydrogen induced cracking). The SSC testing revealed that the API X70 SAW weld was suitable for sour service, satisfying the NACE requirements. By suppressing softening in the ICHAZ region, the SSCC resistance of low carbon TMCP steel welded joints could be more improved.

Assessment of Fatigue Strength Characteristics of Tendon Porch in Offshore Platforms for API 2W Gr. 50 Steel (API 2W Gr.50 강재를 이용한 해양구조물 Tendon Porch의 피로성능 평가)

  • Im, Sung-Woo;Lee, Joo-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.82-88
    • /
    • 2006
  • This assessment is concerned with the fatigue strength of the tendon porch found in TLP. Lorge-scale fatigue tests with models constructed at 30% the size of the real structures have been carried out to investigate the fatigue behavior of the API 2W Grade 50 steel recently produced by POSCO. The fatigue life for the present test models was obtained based on the concept of nominal stress. A comparison of the present test results with those obtained by a numerical approach based on the structural analysis results has showngood agreement. The present results were also compared with the design curves in DnV RP-C203.

Evaluation of Hydrogen Sulfide Corrosion Inhibitors for Wet Gas Pipeline Steel

  • Huy, Vu Dinh;Thoa, Nguyen Thi Phuong;Phong, Tran Quoc;Hoang, Nguyen Thai
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.95-99
    • /
    • 2005
  • Wheel test and potentiodynamic polarization methods were used to evaluate the relative effectiveness of some hydrogen sulfide corrosion inhibitors for the wet gas pipeline API 5L grade X 65 steel. Five commercially corrosion inhibitors have been studied in the deoxygenated produced water solutions containing 10 ppm and 100 ppm of hydrogen sulfide. Based on the experiment results the steel corrosion inhibition mechanism in discussed and two most effective corrosion inhibitors are selected.

Hydrogen Diffusion in APX X65 Grade Linepipe Steels

  • Park, Gyu Tae;Koh, Seong Ung;Kim, Kyoo Young;Jung, Hwan Gyo
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.117-122
    • /
    • 2006
  • Hydrogen permeation measurements have been carried out on API X65 grade linepipe steel. In order to study the effect of steel microstructure on hydrogen diffusion behavior in linepipe steel, the accelerated cooling condition was applied and then three different kinds of microstructures were obtained. Hydrogen permeation measurement has been performed in reference to modified ISO17081 (2004) and ZIS Z3113 method. Hydrogen trapping parameters in these steels were evaluated in terms of the effective diffusivity ($D_{eff}$), permeability ($J_{ss}L$) and the amount of diffusible hydrogen. In this study, microstructures which affect both hydrogen trapping and diffusion were degenerated pearlite (DP), acicular ferrite (AF), bainite and martensite/austenite constituents (MA). The low $D_{eff}$ and $J_{ss}L$ mean that more hydrogen can be trapped reversibly or irreversibly and the corresponding steel microstructure is dominant hydrogen trapping site. The large amount of diffusible hydrogen means that corresponding steel microstructure is predominantly reversible. The results of this study suggest that the hydrogen trapping efficiency increases in the order of DP, bainite and AF, while AF is the most efficient reversible trap.