• Title/Summary/Keyword: APCVD(Atmospheric Pressure Chemical Vapor Deposition)

Search Result 38, Processing Time 0.027 seconds

Optical Property of $TiO_2$ Thin Film growing by Atmospheric Pressure Chemical Vapor Deposition (APCVD법으로 성장된 $TiO_2$ 박막의 광학적 특성)

  • Sim, You-Mi;Lee, Kwang-Soo;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.212-213
    • /
    • 2007
  • $TiO_2$ 박막은 좋은 내구성 전기적 특성과 함께 가시광선 영역에서의 높은 투과율, 높은 굴절률을 나타내어 태양전지의 반사 방지막, TFT 절연막, 광학적 필터에 쓰이는 다층 광학적 코팅 재료 등에 쓰이며 높은 이용가치로 인해 이에 대한 많은 연구가 이루어지고 있다. 본 논문에서는 APCVD(Atmospheric Pressure Chemical Vapor Deposition)법을 이용하여 $200^{\circ}C$에서 $350^{\circ}C$까지 증착 온도를 변화시키며 $TiO_2$ 박막을 제조할 때 나타나는 광학적 특징 변화에 대한 연구를 수행하였다. 온도가 증가할수록 굴절률은 커지고 $TiO_2$, 박막안의 기공과 결함의 비율은 감소하였다. 광투과율은 UV범위 이후에서 급격한 증가를 보였으며 온도가 증가함에 따라 흡수단이 긴 파장쪽으로 이동하였다. 흡수단의 증가는 광학적 밴드갭과 연관되며 온도가 증가할수록 광학적 밴드갭은 낮아지는 것을 확인할 수 있었다.

  • PDF

Heteroepitaxial Growth of Single 3C-SiC Thin Films on Si (100) Substrates Using a Single-Source Precursor of Hexamethyldisilane by APCVD

  • Chung, Gwiy-Sang;Kim, Kang-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.533-537
    • /
    • 2007
  • This paper describes the heteroepitaxial growth of single-crystalline 3C-SiC (cubic silicon carbide) thin films on Si (100) wafers by atmospheric pressure chemical vapor deposition (APCVD) at 1350 oC for micro/nanoelectromechanical system (M/NEMS) applications, in which hexamethyldisilane (HMDS, Si2(CH3)6) was used as a safe organosilane single-source precursor. The HMDS flow rate was 0.5 sccm and the H2 carrier gas flow rate was 2.5 slm. The HMDS flow rate was important in obtaing a mirror-like crystalline surface. The growth rate of the 3C-SiC film in this work was 4.3 μm/h. A 3C-SiC epitaxial film grown on the Si (100) substrate was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Raman scattering, respectively. These results show that the main chemical components of the grown film were single-crystalline 3C-SiC layers. The 3C-SiC film had a very good crystal quality without twins, defects or dislocations, and a very low residual stress.

Characterization of Al/$TiO_2$/Si MIS by APCVD (APCVD법으로 증착된 Al/$TiO_2$/Si MIS 특성)

  • Lee, Kwang-Soo;Jang, Kyung-Soo;Kim, Kyung-Hae;Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.93-94
    • /
    • 2006
  • 나노급 CMOS 기술에서 high-k 물질을 이용하여 게이트 유전막을 형성하고자 하는 연구가 활발히 진행되고 있다. 본 논문에서는 high-k 물질인 $TiO_2$의 특성에 대한 연구를 수행하였다. $TiO_2$를 APCVD법으로 p-type 실리콘 기판에 $50{\AA}{\sim}300{\AA}$ 두께로 증착하였고, evaporator를 이용하여 $TiO_2$ 박막위에 Al을 증착하여 MIS소자를 제작하였다. 두께를 가변 하여 Capacitance-Voltage (C-V) 특성을 측정, 분석하였다.

  • PDF

Fabrication of ZnO thin film gas sensor for detecting $(CH_3)_3N$ gas ($(CH_3)_3N$ 가스 감지용 ZnO 박막 가스 센서의 제조)

  • 신현우;박현수;윤동현;홍형기;권철한;이규정
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 1995
  • Highly sensitive and mechanically stable gas sensors have been fabricated using the microfabrication and micromaching techniques. The sensing material used to detect the offensive trimethylarnine ((CH$_{3}$)$_{3}$N) gas is 6 wt% $Al_{2}$O$_{3}$-doped, 1000.angs.-thick ZnO deposited by r. f. magnetron sputtering. The optimum operating temperature of the sensor is 350.deg.C and the corresponding heater power is about 85mW. Excellent thermal insulation is achieved by the use of a double-layer structure of 0.2.mu.m -thick silicon nitride and 1.4.mu.m-thick phosphosilicate glass(PSG) prepared by low pressure chemical vapor deposition(LPCVD) and atmospheric pressure chemical vapor deposition(APCVD), respectively. The sensors are mechanically stable enough to endure at least 43, 200 heat cycles between room temperature and 350.deg. C.

  • PDF

Mechanical Properties of in-situ Doped Polycrystalline 3C-SiC Thin Films by APCVD (APCVD로 in-situ 도핑된 다결정 3C-SiC 박막의 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.235-238
    • /
    • 2009
  • This paper describes the mechanical properties of poly (Polycrystalline) 3C-SiC thin films with $N_2$ in-situ doping. In this work, the poly 3C-SiC film was deposited by APCVD (Atmospheric Pressure Chemical Vapor Deposition) method using single-precursor HMDS (Hexamethyildisilane: $Si_2(CH_3)_6)$ at $1200^{\circ}C$. The mechanical properties of doped poly 3C-SiC thin films were measured by nono-indentation according to the various $N_2$ flow rate. In the case of 0 sccm $N_2$ flow rate, Young's Modulus and hardness were obtained as 285 GPa and 35 GPa, respectively. Young's Modulus and hardness were decreased according to increase of $N_2$ flow rate. The crystallinity and surface roughness was also measured by XRD (X-Ray Diffraction) and AFM (Atomic Force Microscopy), respectively.

Growth Characteristics of Thick $\textrm{SiO}_2$ Using $\textrm{O}_3$/TEOS APCVD ($\textrm{O}_3$/TEOS를 이용한 후막 $\textrm{SiO}_2$의 성장특성 연구)

  • Lee, U-Hyeong;Choe, Jin-Gyeong;Kim, Hyeon-Su;Yu, Ji-Beom
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.144-148
    • /
    • 1999
  • We have studied the deposition characteristics of thick silicon dioxide film on Si substrate by $O_3$/TEOS APCVD(Atmospheric Pressure Chemical Vapor Deposition). The effect of deposition parameters such as the distance between showerhead and substrate, deposition temperature, TEOS flow rate and $O_3$/TEOS ratio on deposition rate, surface morphology, and properties of films as investigated. As deposition temperature increased, deposition rate decreased but the surface morphology and adhesion of film to substrate improved. As the distance between showerhead and substrate decreased, the deposition rate increased. Etching rate using the BOE increased as TEOS flow rate increased, but was independent of$ O_3$/TEOS ratio. Deposition rate of $5\mu\textrm{m}$/hour was obtained under the condition that the distance between showerhead and substrate was 5mm and the deposition temperature was $370^{\circ}C$.

  • PDF

Influence of Carbonization Conditions in Hydrogen Poor Ambient Conditions on the Growth of 3C-SiC Thin Films by Chemical Vapor Deposition with a Single-Source Precursor of Hexamethyldisilane

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.175-180
    • /
    • 2013
  • This paper describes the characteristics of cubic silicon carbide (3C-SiC) films grown on a carbonized Si(100) substrate, using hexamethyldisilane (HMDS, $Si_2(CH_3)_6$) as a safe organosilane single precursor in a nonflammable $H_2$/Ar ($H_2$ in Ar) mixture carrier gas by atmospheric pressure chemical vapor deposition (APCVD) at $1280^{\circ}C$. The growth process was performed under various conditions to determine the optimized growth and carbonization condition. Under the optimized condition, grown film has a single crystalline 3C-SiC with well crystallinity, small voids, low residual stress, low carrier concentration, and low RMS. Therefore, the 3C-SiC film on the carbonized Si (100) substrate is suitable to power device and MEMS fields.

A Study on the Flow Characteristics over the Rotating Susceptor in CVD Reactor (CVD 반응로 내부 회전 원판 주위의 유동 특성 연구)

  • Cha, Kwan;Kim, Youn-J.;Boo, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.213-218
    • /
    • 2001
  • The characteristics of the fluid flow and mass transfer in a vertical atmospheric pressure chemical vapor deposition (APCVD) are numerically studied. In order to get the optimal process parameters for the uniformity of deposition on a substrate, Navier-Stokes and energy equations have been solved for the pressure, mass-flow rate and temperature distribution in a CVD reactor. Results show that the thermal boundary condition at the reactor wall has an important effect in the formation of buoyancy-driven secondary cell when radiation effect is considered. Results also show that reduction of the buoyancy effect on the heated reactor improves the uniformity of deposition.

  • PDF

Fabrication of the Hihg Power SiGe Heterojunction Bipolar Transistors using APCVD (상압 화학 기상 증착기를 이용한 고출력 SiGe HBT제작)

  • 한태현;이수민;조덕호;염병령
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.26-28
    • /
    • 1996
  • A high power SiGe HBT has been fabricated using APCVD(Atmospheric Pressure Chemical Vapor Deposition) and its perfermanoe has been analysed. The composition of Ge in the SiGe base was graded from 0% at the emitter-base junction to 20% at the base-collector junction. As a base electrode, titanium disilicide(TiSi$_2$) was used to reduce the extrinsic base resistance. The SiGe HBT with an emitter area of 2$\times$8${\mu}{\textrm}{m}$$^2$typically has a cutoff frequency(f$_{T}$) of 7.0GHz and a maximun oscillation frequency(f$_{max}$) of 16.1GHz with a pad de-embedding. The packaged high power SiGe HBT with an emitter area of 2xBx80${\mu}{\textrm}{m}$$^2$typically shows a cutoff frequency of 4.7GHz and a maximun oscillation frequency of 7.1GHz at Ic of 115mA.A.A.

  • PDF