• Title/Summary/Keyword: APB

Search Result 77, Processing Time 0.033 seconds

Effect of Crystallographic Orientation on Fracture Mechanism of Ni-Base Superalloy

  • Han, Chang-Suk;Lim, Sang-Yeon
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.630-635
    • /
    • 2015
  • The fatigue strength of a nickel-base superalloy was studied. Stress-controlled fatigue tests were carried out at $700^{\circ}C$ and 5 Hz using triangular wave forms. In this study, two kinds of testing procedures were adopted. One is the conventional tension-zero fatigue test(R = 0). The other was a procedure in which the maximum stress was held at 1000 MPa and the minimum stress was diverse from zero to 1000 MPa at 24 and $700^{\circ}C$. The results of the fatigue tests at $700^{\circ}C$ indicate that the fracture mechanism changed according to both the mean stress and the stress range. At a higher stress range, ${\gamma}^{\prime}$ precipitates are sheared by a/2<110> dislocation pairs coupled by APB. Therefore, in a large stress range, the deformation occurred by shearing of ${\gamma}^{\prime}$ by a/2<110> dislocations, which brought about crystallographic shear fracture. As the stress range was decreased, the fracture mode gradually changed from crystallographic shear fracture to gradual growth of fatigue cracks. At an intermediate stress range, as it became more difficult for a/2<110> dislocation pairs to shear ${\gamma}^{\prime}$ particles, cracks started to propagate in the matrix, avoiding the harder ${\gamma}^{\prime}$ particles. High mean stress induced creep deformation, that is, ${\gamma}^{\prime}$ particles were sheared by {111}<112> slip systems, which led to the formation of stacking faults in the precipitates. Thus, the change in fracture mechanism brought about the inversion of the S-N curves.

Microstructure Observations in $(1-x)NdAlO_3-xCaTiO_3$ System ($(1-x)NdAlO_3-xCaTiO_3$ 시스템의 미세구조 관찰)

  • Lee, Hwack-Joo;Ryu, Hyun;Park, Hyun-Min;Cho, Yang-Koo;Kim, Jae-Chun;Nahm, Sahn
    • Applied Microscopy
    • /
    • v.32 no.1
    • /
    • pp.9-15
    • /
    • 2002
  • Microstructural investigations of $(1-x)NdAlO_3-xCaTiO_3$ (NACT) complex perovskite compounds were carried out using X-ray diffractometry, neutron diffraction and transmission electron microscopy. When $0.3{\leq}x{\leq}0.9$, NACT had not only the 1 : 1 chemical ordering of cations but also the antiphase and inphase tilting of oxygen octahedron and the antiparallel shift of cations. Both the antiphase boundaries and the ferroelastic domains were present in the microstructure. The long and straight ferroelastic domains became degenerate as x decreases. When x was smaller than 0.3, the chemical ordering was absent and the antiphase tilting of oxygen octahedron was observed. The defects like tangled dislocations and the second phase were also found in the microstructure.

Effects of Carthami flos on pacemaker potentials of small intestinal and colonic interstitial Cells of Cajal (홍화의 생쥐 소장 및 대장 카할 간질세포의 향도잡이 전위 조절에 미치는 효능에 관한 연구)

  • Kim, Byung Joo
    • Herbal Formula Science
    • /
    • v.27 no.4
    • /
    • pp.237-244
    • /
    • 2019
  • Objectives : The purpose of this study was to investigate the effects of Carthami flos on pacemaker potentials of small intestinal and colonic Interstitial Cells of Cajal (ICC). Methods : To dissociate the ICC, we used enzymatic digestions from the small intestine and colon in mice. In the ICC, the electrophysiological whole-cell patch-clamp configuration was used to record pacemaker potentials in the cultured ICC. Results : 1. The ICC generated pacemaker potentials in the murine small intestine and colon. 2. Pretreatment with a Ca2+ free solution and thapsigargin, a Ca2+-ATPase inhibitor in the endoplasmic reticulum, stopped the pacemaker potentials. In the case of Ca2+-free solutions, Carthami flos did not induce membrane depolarizations in the murine small intestine and colon. However, when thapsigargin in a bath solution was applied, Carthami flos induced membrane depolarizations only in the murine colon. 3. Pretreatment with 2-APB (transient receptor potential melastatin (TRPM) channel inhibitor) abolished the pacemaker potentials and suppressed Carthami flos-induced effects in the murine small intestine and colon. 4. However, pretreatment with T16Ainh-AO1 (Ca2+ activated Cl- channel; anoctamin 1 (ANO1) inhibitor) did not affect the pacemaker potentials and induced Carthami flos-induced effects only in the murine small intestine. Conclusions : These results suggest that Carthami flos can modulate the pacemaker activity of ICC and the mechanisms underlying pacemaking in ICC might be different in the small intestine and the colon.

Presenilin Modulates Calcium-permeant, Magnesium-Nucleotide regulated channel, I(MgNUM)

  • Shin, Sun-Young;Jeong, Soon-Youn;Uhm, Dae-Yong;Sungkwon Chung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.47-47
    • /
    • 2003
  • The presenilin 1 (PS1) or PS2 is an essential component of the ${\gamma}$-secretase complex, which mediates the intramembrane proteolysis of selected type-I membrane, including the ${\beta}$-amyloid precursor protein (APP) to yield A${\beta}$. Familial Alzheimer's disease (FAD)-associated mutations in presenilins give rise to an increased production of a highly amyloidogenic A${\beta}$42. In addition to their well-documented proteolytic function, the presenilins play a role in calcium signaling. We have previously reported that presenilin FAD mutations cause highly consistent alterations in intracellular calcium signaling pathways, which include deficits in capacitative calcium entry (CCE), the refilling mechanism for depleted internal calcium stores. However, molecular basis for the presenilin-mediated modulation of CCE remains to be elucidated. In the present study, whole-cell patch clamp method was used to identify a specific calcium-permeable ion channel current(s) that is responsible for the CCE deficits associated with FAD-linked PS1 mutants. Unexpectedly, both voltage-activated and conventional store depletion-activated calcium currents I(CRAC), were absent in HEK293 cells, which were stably transfected either with wild-type or FAD mutant (L286V, M146L, and delta E9) forms of PS1. Recently, magnesium-nucleotide-regulated metal cation current, or I(MagNum), has been described and appears to share many common properties with I(CRAC) including calcium permeability and inhibitor sensitivity (e.g. 2-APB). We have detected I(MagNum) in all 293 cells tested. Interestingly, FAD mutant 293 cells developed only about half of currents compared to PS1 wild type cells.

  • PDF

The Effect of Repetitive Transcranial Magnetic Stimulation-Induced Proprioceptive Deafferentation to Ipsilateral and Contralateral Motor Evoked Potentials (반복적 경두개자기자극을 통한 고유감각 구심로 차단이 동측 및 반대측 운동유발전위에 미치는 영향)

  • Kim, Min-Jeong;Lee, Kyoung-Min;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.2
    • /
    • pp.158-162
    • /
    • 2006
  • Background: It has been proposed that proprioceptive input can modulate neural excitability in both primary motor cortices (M1) simultaneously, although direct evidence for this is still lacking. Previous studies showed that proprioceptive accuracy of one hand is reduced after the application of one-Hz repetitive transcranial magnetic stimulation (rTMS) for 15 minutes over the contralateral somatosensory cortex. The aim of this study was to investigate the effect of rTMS-induced central proprioceptive deafferentation to excitability of both M1 as reflected in ipsilateral and contralateral motor evoked potentials (MEP). Methods: MEPs of both abductor pollicis bravis (APB) muscles were recorded using single-pulse TMS over right M1 in seven healthy subjects. Immediately after one-Hz rTMS was applied for 15 minutes over the right somatosensory cortex, the MEP measurement was repeated. The proprioceptive function of the left thumb was assessed, before and after rTMS, using a position-matching task. Results: There was an increase in ipsilateral MEP after the rTMS: whereas no MEPs were recorded on the ipsilateral hand before the rTMS, MEPs were recorded in both ipsilateral and contralateral hand in three of seven subjects. At the same time, the mean log amplitude was reduced and the mean latency was prolonged in the contralateral MEP. Conclusions: rTMS-induced central proprioceptive deafferentation reduces the MEP generation in the contralateral hand, and fascilitates that in the ipsilateral hand. A further study with a larger sample seems warranted to confirm this finding and to elucidate the neurophysiology underlying it.

  • PDF

유기 금속 화학 증착법에 의한 Si 기판 위에 GaP 층 성장시 에피의 초기 단계의 성장 매개 변수에 영향

  • Gang, Dae-Seon;Seo, Yeong-Seong;Kim, Seong-Min;Sin, Jae-Cheol;Han, Myeong-Su;Kim, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.209.1-209.1
    • /
    • 2013
  • GaP는 가시광선 발광다이오드을 얻을 수 있는 적절한 재료중의 하나로 해당영역의 파장에 대하여 높은 양자효율을 얻을 수 있고, 깊은 준위 재결합이 없기 때문에 GaP 녹색 및 As 첨가한 GaAsP 적색 LED 에 적용할 수 있습니다. 또한, 상온에서 2.2 eV 에 해당하는 넓은 에너지 밴드갭을 가지고 있으므로, 소음이 없는 자외선 검출기에도 적합합니다. 이 물질에 대한 소자들은 기존에 GaP 기판을 사용하였습니다. 최근, GaP 와 격자상수가 비슷한 Si 기판을 활용하여 그 위에 성장하는 방법에 대한 관심이 많아졌습니다. Si는 물리적 및 화학적으로 안정하고 딱딱한 소재이며 대면적 기판을 쉽게 얻을 수 있어 전자 기기 및 대규모 집적 회로의 좋은 소재입니다. Si 와 대조적으로 GaP은 깨지기 쉬운 재료이며 GaP 기판은 Si와 같은 대면적 기판을 얻을 수 없습니다. 이러한 문제의 한 가지 해결책은 Si 기판위에 GaP 층의 성장입니다. GaP 과 Si의 조합은 현재의 광전소자 들에 더하여 더 많은 응용프로그램들을 가능하게 할 것입니다. 그러나, Si 기판위에 GaP 성장 시 삼차원적 성장 및 역위상 경계면과 같은 문제점들이 발생하므로 질이 높고 균일한 결정의 GaP 를 얻기가 어렵습니다. 따라서, Si 에 GaP 의 성장시 초기 단계를 제어하는 성장 기술이 필요합니다. 본 연구에서는, 유기금속화학증착법을 이용하여 Si 기판위에 양질의 GaP를 얻을 수 있는 최적의 성장조건을 얻고자 합니다. 실험 조건은 Si에 GaP의 에피택셜 성장의 초기 단계에 영향을 주는 V/III 비율, 성장압력, 기판방향 등을 가변하는 조건으로 진행하였습니다. V/III 비율은 100~6400, 성장 압력은 76~380 Torr로 진행하였고, Si 기판은 just(001)과 2~6도 기울어진 (001) 기판을 사용하였습니다.

  • PDF

Fire Risk of Wood Treated With Boron Compounds by Combustion Test (연소시험에 의한 붕소 화합물 처리 목재의 화재위험성)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.19-26
    • /
    • 2018
  • Experiments on the combustion characteristics of untreated wood specimens and also treated ones with boric acid and ammonium pentaborate were carried out using a cone calorimeter according to ISO 5660-1 standard. As a result, comparing to untreated specimen, the fire performance index (FPI) of the specimens treated with boron compounds increased by 1.2 to 2.1 times and the fire growth index (FGI) increased by 1.6 to 8.4%. Also, total smoke release rate (TSR) was 9.0 to 28.3% lower than that of the untreated specimen. It is understood that the test specimens treated with the boron compound produces a carbonized layer with a flame retarding effect. The highest CO concentration, 0.01112%, for the untreated specimen was observed at 418 s, but the specimens treated with boron compound decreased 13.2 to 37.5% compared to untreated specimen. Therefore, wood treated with boron compounds is expected to have lower fire hazards and risks.

Effect of Sphingosine-1-Phosphate on Intracellular Free Ca2+ in Cat Esophageal Smooth Muscle Cells

  • Lee, Dong Kyu;Min, Young Sil;Yoo, Seong Su;Shim, Hyun Sub;Park, Sun Young;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.546-552
    • /
    • 2018
  • A comprehensive collection of proteins senses local changes in intracellular $Ca^{2+}$ concentrations ($[Ca^{2+}]_i$) and transduces these signals into responses to agonists. In the present study, we examined the effect of sphingosine-1-phosphate (S1P) on modulation of intracellular $Ca^{2+}$ concentrations in cat esophageal smooth muscle cells. To measure $[Ca^{2+}]_i$ levels in cat esophageal smooth muscle cells, we used a fluorescence microscopy with the Fura-2 loading method. S1P produced a concentration-dependent increase in $[Ca^{2+}]_i$ in the cells. Pretreatment with EGTA, an extracellular $Ca^{2+}$ chelator, decreased the S1P-induced increase in $[Ca^{2+}]_i$, and an L-type $Ca^{2+}$-channel blocker, nimodipine, decreased the effect of S1P. This indicates that $Ca^{2+}$ influx may be required for muscle contraction by S1P. When stimulated with thapsigargin, an intracellular calcium chelator, or 2-Aminoethoxydiphenyl borate (2-APB), an $InsP_3$ receptor blocker, the S1P-evoked increase in $[Ca^{2+}]_i$ was significantly decreased. Treatment with pertussis toxin (PTX), an inhibitor of $G_i$-protein, suppressed the increase in $[Ca^{2+}]_i$ evoked by S1P. These results suggest that the S1P-induced increase in $[Ca^{2+}]_i$ in cat esophageal smooth muscle cells occurs upon the activation of phospholipase C and subsequent release of $Ca^{2+}$ from the $InsP_3$-sensitive $Ca^{2+}$ pool in the sarcoplasmic reticulum. These results suggest that S1P utilized extracellular $Ca^{2+}$ via the L type $Ca^{2+}$ channel, which was dependent on activation of the $S1P_4$ receptor coupled to PTX-sensitive $G_i$ protein, via phospholipase C-mediated $Ca^{2+}$ release from the $InsP_3$-sensitive $Ca^{2+}$ pool in cat esophageal smooth muscle cells.

Oxidized Low-density Lipoprotein- and Lysophosphatidylcholine-induced $Ca^{2+}$ Mobilization in Human Endothelial Cells

  • Kim, Moon-Young;Liang, Guo-Hua;Kim, Ji-Aee;Choi, Soo-Seung;Choi, Shin-Ku;Suh, Suk-Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.27-32
    • /
    • 2009
  • The effects of oxidized low-density lipoprotein(OxLDL) and its major lipid constituent lysophosphatidylcholine(LPC) on $Ca^{2+}$ entry were investigated in cultured human umbilical endothelial cells(HUVECs) using fura-2 fluorescence and patch-clamp methods. OxLDL or LPC increased intracellular $Ca^{2+}$ concentration($[Ca^{2+}]_i$), and the increase of $[Ca^{2+}]_i$ by OxLDL or by LPC was inhibited by $La^{3+}$ or heparin. LPC failed to increase $[Ca^{2+}]_i$ in the presence of an antioxidant tempol. In addition, store-operated $Ca^{2+}$ entry(SOC), which was evoked by intracellular $Ca^{2+}$ store depletion in $Ca^{2+}$-free solution using the sarcoplasmic reticulum $Ca^{2+}$ pump blocker, 2, 5-di-t-butyl-l,4-benzohydroquinone(BHQ), was further enhanced by OxLDL or by LPC. Increased SOC by OxLDL or by LPC was inhibited by U73122. In voltage-clamped cells, OxLDL or LPC increased $[Ca^{2+}]_i$ and simultaneously activated non-selective cation(NSC) currents. LPC-induced NSC currents were inhibited by 2-APB, $La^{3+}$ or U73122, and NSC currents were not activated by LPC in the presence of tempol. Furthermore, in voltage-clamped HUVECs, OxLDL enhanced SOC and evoked outward currents simultaneously. Clamping intracellular $Ca^{2+}$ to 1 ${\mu}M$ activated large-conductance $Ca^{2+}$-activated $K^+(BK_{ca})$ current spontaneously, and this activated $BK_{ca}$ current was further enhanced by OxLDL or by LPC. From these results, we concluded that OxLDL or its main component LPC activates $Ca^{2+}$-permeable $Ca^{2+}$-activated NSC current and $BK_{ca}$ current simultaneously, thereby increasing SOC.

Functional-Magnetic Resonance Imaging and Transcranial Magnetic Stimulation in a Case of Schizencephaly (뇌열 1예의 기능적 자기공명영상과 경두부 자기자극)

  • 변우목;한봉수;이재교;장용민
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.14-19
    • /
    • 2000
  • Purpose : This study was to present the functional brain mapping of both functional magnetic resonance imaging(MRI) and transcranial magnetic stimulation(TMS) in a case of schizencephaly. Materials and methods : A 28-year-old man, who had left hemiplegia and schizencephaly in right cerebral hemisphere, was exacted with both functional MRI and TMS. Motor function of left hand was decreased whereas right hand was within normal limit. For functional MRI, gradient-echo echo planar imaging($TR/TE/{\alpha}$=1.2 sec/90 msec/90) was employed. The paradigm of motor task consisted of repetitive self-paseo hand flexion-extension exercises with 1-2 Hz periods. An image set of 10 slices was repetitively acquired with 15 seconds alternating periods of task performance and rest and total 6 cycles (three ON periods and three OFF periods) were performed. In brain mapping, TMS was performed with the round magnetic stimulator (mean diameter; 90mm). The magnetic stimulation was done with 80% of maximal output. The latency and amplitude of motor evoked potential(MEP)s were obtained from both abductor pollicis brevis(APB) muscles. Results : Functional MRI revealed activation of the left primary motor cortex with flexion-extension exercises of healthy right hand. On the other hand, the left primary motor cortex, left supplementary motor cortex, and left promoter areas were activated with flexion-extension exercises of left hand. In TMS, magnetic evoked potentials were induced in no areas of right cerebral hemisphere, but in 5 areas of left corebral hemisphere from both abductor pollicis brevis. Latency, amplitude, and contour of response of the magnetic evoked potentials in both hands were similar. Conclusion : Functional MRI and TMS in a patient with schizencephaly were successfully used to localize cortical motor function. Ipsilateral motor pathway is thought to be secondary to reinforcement of the corticospinal tract of the ipsilateral motor cortex.

  • PDF