• Title/Summary/Keyword: AP/HTPB 추진제

Search Result 52, Processing Time 0.028 seconds

Impact Sensitivity of HTPE & HTPB Propellants using Friability Test (Friability 시험을 이용한 HTPE 및 HTPB 추진제의 충격 민감도)

  • Kim, Chang-Kee;Yoo, Ji-Chang;Min, Byoung-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • Hydroxyl terminated polyether(HTPE) propellants have been developed recently as possible replacements for HTPB/AP propellants currently used in a number of tactical rocker motor. As analyzing friability of HTPE and HTPB propellants in this study, the following results could be derived. The friability of the tested propellants depended on its binder contents, mechanical property, and burning rate. It was decreased as burning rate was lowered and toughness was increased.

Characteristics of HTPB/AP/AOT Solid Propellant (HTPB/AP/AOT 고체 추진제의 특성 연구)

  • Kim, Miri;Choi, Jaesung;Kim, Jeongeun;Hong, Myungpyo;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • In this study, AOT that is used as a surfactant in various industries was applied to an HTPB/AP solid propellant. AOT is one of the anionic surfactants, and there have been cases where AOT was reported to induce self-extinguishable properties in propellants overseas. In this study, solid propellants using AOT were prepared, and their properties and combustion characteristics were investigated. The combustion rate of the AOT-applied propellant drops sharply when the pressure reaches a certain value during combustion. Further, the density and hardness of the propellant are lower than those of conventional HTPB/AP propellants.

The Study of Combustion, Ignition and Safety Characteristics of HTPE Insensitive Propellant (HTPE 둔감추진제 연소/점화/안전도 특성 연구)

  • Yoo, Ji-Chang;Jung, Jung-Yong;Kim, Chang-Kee;Min, Byung-Sun;Ryu, Baek-Neung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.351-355
    • /
    • 2011
  • In this study, 2 kinds of HTPE insensitive propellants composed of HTPE/BuNENA binder, AP, AN and Al were investigated for combustion characteristics, ignition delay time, sensitivity and insensitive properties compared with HTPB propellant. HTPE propellant showed almost same sensitivity results as HTPB propellant, showed 2~3 times higher value than the value of HTPB propellant, ignition delay time respectively, and met the standard criteria, while HTPB propellant failed.

  • PDF

The Study of Curing Day Reduction by Step Curing of HTPB/AP Propellant (HTPB/AP계열의 고체 추진제의 Step 경화 방법을 통한 경화일(기간) 단축)

  • Kim, Kahee;Park, Jung-Ho;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.101-107
    • /
    • 2020
  • In this paper, step-curing, which includes the change of curing temperature on the curing process, was applied to reduce curing day of HTPB/AP based propellant. This study targets the improvement of productivity of HTPB/AP based solid rocket motor. Comparison of mechanical properties of propellant resulted in the change of normal curing condition (60℃, 5 days) to step-curing condition (60℃, 1 day / 65℃, 3 days). Post-cure test was conducted to determine the impact on the shelf life of the solid rocket motor. The aging characteristics of propellants were analyzed by measuring mechanical properties and thermal expansion factor. To step-cured propellant, accelerated aging test was performed for 12 weeks, followed by tensile test. Sm(bar) and Em(%) were higher than 8 bar and 40% each, showing excellent mechanical properties.

고체 충전제의 입자 분포에 따른 추진제 특성

  • 김창기;황갑성;임유진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.28-28
    • /
    • 2000
  • HTPB/AP/AI 추진제는 none-reinforcing filler가 다량 함유되어 있어 기계적 특성은 바인더와 고체 충진제의 계면 접착력에 따라 크게 영향을 받으며 이를 향상시키기 위해 결합제의 연구가 다수 진행되었고 추진제의 인장 변형율을 증가시키기 위해 HTPB의 관능기수에 따른 가교밀도, 경화제와 경화촉매, 가소제등 최적의 바인더조성을 위해 가능한 원료 및 함량 연구에 많은 노력을 기울여 왔다. 또한 추진제의 주원료로서 AP는 추진제의 성능 및 내탄도 관점에서 입자크기에 따른 연소특성 및 고성능을 위한 충전 분율에 대해 주로 연구되었으며 특히 Oberth와 Farris는 고체추진제 분야에서 많은 업적을 이루었다.(중략)

  • PDF

Coolant Effect on Gas Generator Propellant (가스발생기용 추진제에 대한 냉각제 효과)

  • Baek Gookhyun;Yim Yoo-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • The effect of coolants has been studied on the burning properties of low burning rate HTPB/AP composite propellant containing Oxamide or Melamine as coolant for the gas generator. With increasing the content of coolant, the burning rate and the flame temperature could be lowered and the effect on flame temperature was about the same for two coolants. However due to the different thermal decomposition properties of coolant, the burning rate of Melamine propellant was found to abnormally decrease if $200{\mu}m$ AP was partially replaced with $6{\mu}m$ AP.

Extinction Characteristic of AP/HTPB Composite Solid Propellant by Rapid Depressurization (급감압에 의한 AP/HTPB 복합고체추진제의 소화 특성)

  • Kim, Daeyu;Yoon, Jisang;Lee, Kukjin;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.21-26
    • /
    • 2019
  • Exposure to a rapidly depressurized environment causes extinction of a burning solid propellant. Experiments have been conducted to determine the rate of depressurization required to extinguish a burning solid propellant. For this purpose, a depressurization combustor was designed and fabricated. The results of this experiment were used to determine the boundary between extinction and non-extinction of AP/HTPB solid propellants under different propellant compositions. Experimental results show that the initial and final pressures have a considerable effect on the critical depressurization rate.

Study on the enhancement of burning rate of solid propellants (고체 추진제의 연소속도 증진 방안 연구)

  • Lee, Sunyoung;Hong, Myungpyo;Lee, Hyoungjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.508-512
    • /
    • 2017
  • In this study, we carried out the study on the combustion characteristics of HTPB/AP propellants with Al and Zr as fuel metal in order to develop the solid propellant with high burning rate. The major combustion characteristics of propellant were investigated as measuring of the burning rate and pressure exponent, and the HTPB/AP solid propellants were prepared with introducing Butacene as burning rate catalyst for the enhancement of burning rate. The propellant with Al and Zr was demonstrated the improvement of propellant performance and combustion characteristic.

  • PDF

A Formulation and Performance Characteristics of Composite Solid Propellant for an Application to Gas Generators (기체발생기용 복합고체추진제의 조성 및 성능특성 연구)

  • Kim, Jeong-Soo;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.181-184
    • /
    • 2009
  • A development of a composite solid propellant is carried out for an application to gas generators as an energy source of rocket system. With HTPB as a propellant binder which has 80% of particle loading ratio, a favorable rheology, and moderate curing properties at the range of $-50^{\circ}C{\sim}70^{\circ}C$, AN is selected as the first kind of oxidizer having the characteristics of a low flame temperature, minimal particle residual as well as nontoxic products. AP is the second oxidant for ballistic property control. A series of experiments for the improvement of physical properties were conducted and resulted in the propellant formulation having 30% of strain rate at 8 bar of max. stress.

  • PDF

Ignition of Solid Propellants at Subatmospheric Pressures (대기압 이하에서 고체 추진제의 점화 특성 향상 연구)

  • Kim, In-Cul;Ryoo, Baek-Neung;Jung, Jung-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2006
  • Several propellants were investigated experimentally for ignition characteristics in subatmospheric pressure. The threshold ignition pressure was 4 psia for HTPB/AP composite propellant. The partial replacement of AP in HTPB/AP propellant by $5{\sim}l5%$ of HMX, HNIW showed that the improvements in ignition delay was over 50% and the threshold pressure was below 0.4 psia. This appears to be due to the characteristics of HMX and HNIW exothermic dissociated at the temperature(${\sim}220^{\circ}C$) love. than that of AP. The ignition substance $B/KNO_3$ was coated thinly on the propellant surface for better ignition performance. As a result, ignition delay time of 15% was improved. NC is applied to $B/KNO_3$ ignition substance as a secondary binder and $NC-B/KNO_3$ suspension solution is coated to the propellant surface.