• Title/Summary/Keyword: AOI (Automated Optical Inspection machine)

Search Result 2, Processing Time 0.014 seconds

Path Planning of Automated Optical Inspection Machines for PCB Assembly Systems

  • Park Tae-Hyoung;Kim Hwa-Jung;Kim Nam
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.96-104
    • /
    • 2006
  • We propose a path planning method to improve the productivity of AOI (automated optical inspection) machines in PCB (printed circuit board) assembly lines. The path-planning problem is the optimization problem of finding inspection clusters and the visiting sequence of cameras to minimize the overall working time. A unified method is newly proposed to determine the inspection clusters and visiting sequence simultaneously. We apply a hybrid genetic algorithm to solve the highly complicated optimization problem. Comparative simulation results are presented to verify the usefulness of the proposed method.

Defect Classification of Components for SMT Inspection Machines (SMT 검사기를 위한 불량유형의 자동 분류 방법)

  • Lee, Jae-Seol;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.982-987
    • /
    • 2015
  • The inspection machine in SMT (Surface Mount Technology) line detects the assembly defects such as missing, misalignment, loosing, or tombstone. We propose a new method to classify the defect types of chip components by processing the image of PCB. Two original images are obtained from horizontal lighting and vertical lighting. The image of the component is divided into two soldering regions and one packaging region. The features are extracted by appling the PCA (Principle Component Analysis) to each region. The MLP (Multilayer Perceptron) and SVM (Support Vector Machine) are then used to classify the defect types by learning. The experimental results are presented to show the usefulness of the proposed method.