• Title/Summary/Keyword: AODV routing protocol

Search Result 208, Processing Time 0.026 seconds

Performance Evaluation of Position-based and Non-position-based Routing Protocols in a Vehicular Ad-Hoc Network (VANET에 있어서 위치기반과 비위치기반 라우팅프로토콜의 성능 평가)

  • Jo, Jun-Mo;Choi, Dae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.213-218
    • /
    • 2006
  • In this paper, we evaluate and compare performance between position-based and non-position-based routing protocols in a vehicular ad-hoc network. The protocols evaluated in this paper for many performance evaluation aspects are a position-based routing protocol, GPSR (Greedy Perimeter Stateless Routing), and the non-position-based such as AODV (Ad-hoc On-Demand Distance Vector) and DSR (Dynamic Source Routing) protocols. The three protocol characteristics such as Packet Delivery Ratio, Latency of first packet per connection, and Average number of hops depending on distance are compared and evaluated. As the result of simulation, the AODV performed better than the DSR. However, due to the high mobility characteristic of a vehicular ad-hoc network, GPSR, the position-based routing performs better than the non-position-based routing protocols such as AODV and DSR in a vehicular ad-hoc network environment.

  • PDF

Neighbor-Based Probabilistic Rebroadcast Routing Protocol for Reducing Routing Overhead in Mobile Ad Hoc Networks

  • Harum, Norharyati;Hamid, Erman;Bahaman, Nazrulazhar;Ariff, Nor Azman Mat;Mas'ud, Mohd Zaki
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.1-8
    • /
    • 2021
  • In Mobile Ad-Hoc Network (MANET) Application, routing protocol is essential to ensure successful data transmission to all nodes. Ad-hoc On-demand Distance Vector (AODV) Protocol is a reactive routing protocol that is mostly used in MANET applications. However, the protocol causes Route Request (RREQ) message flooding issue due to the broadcasting method at the route request stage to find a path to a particular destination, where the RREQ will be rebroadcast if no Request Response (RREP) message is received. A scalable neighbor-based routing (SNBR) protocol was then proposed to overcome the issue. In the SNBR protocol, the RREQ message is only rebroadcast if the number of neighbor nodes less than a certain fix number, known as drop factor. However, since a network always have a dynamic characteristic with a dynamic number of neighbor nodes, the fix drop factor in SNBR protocol could not provide an optimal flooding problem solution in a low dense network environment, where the RREQ message is continuously rebroadcast RREQ message until reach the fix drop factor. To overcome this problem, a new broadcasting method as Dynamic SNBR (DSNBR) is proposed, where the drop factor is determined based on current number of neighbor nodes. This method rebroadcast the extra RREQ messages based on the determined dynamic drop factor. The performance of the proposed DSNBR is evaluated using NS2 and compared with the performance of the existing protocol; AODV and SNBR. Simulation results show that the new routing protocol reduces the routing request overhead, energy consumption, MAC Collision and enhances end-to-end delay, network coverage ratio as a result of reducing the extra route request messages.

Design and Evaluation of Neighbor-aware AODV Routing Protocol in Mobile Ad-hoc Network (이동 애드혹 네트워크에서 이웃노드 정보를 이용한 AODV 라우팅 프로토콜의 설계 및 평가)

  • Kim, Cheol-Joong;Park, Seok-Cheon
    • The KIPS Transactions:PartC
    • /
    • v.15C no.3
    • /
    • pp.213-220
    • /
    • 2008
  • A MANET is an autonomous, infrastructureless system that consists of mobile nodes. In MANET, on-demand routing protocols are usually used because network topology changes frequently. The current approach in case of broken routes is to flag an error and re-initiate route discovery either at the source or at the intermediate node. Repairing these broken links is a costly affair in terms of routing overhead and delay involved. Therefore, this paper propose a NAODV(Neighbor-aware AODV) protocol that stands on the basis of an AODV. It sets up the route rapidly if it operates for setting the route directly by using sequence number of neighbor nodes without re-search the route when the route to destination node is broken. Also, it reduces loss of packets. We use NS-2 for the computer simulation and validate that the proposed scheme is better than general AODV in terms of packet delivery ratio and average end-to-end delay. Also, when the proposed protocol is applied to the large ad-hoc network with multiple nodes, the performance is more efficient.

An Energy Efficient Routing Protocol using MAC-layer resources in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 MAC 계층 자원을 이용한 에너지 효율 라우팅 프로토콜)

  • Yoo, Dae-Hun;Choi, Woong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.219-228
    • /
    • 2007
  • End-to-end path setup and maintenance are very important for mobile ad-hoc wireless communications, because of the mobility and the limited battery capacity of the nodes in the networks. the AODV routing protocol is the one of mary proposed protocols. However, there are route failure problem with the Proposed protocols between intermediate nodes due to such mobility and exhausted battery characteristics, and this is because only the shortest hop count is considered for the route setup. If route failure happens. Problem such as the waste of bandwidth and the increment of the energy consumption occur because of the discarding data packets in the intermediate nodes and the path re-setup process required by the source node. In addition, it obviously causes the network lifetime to be shortened. This paper proposes a routing protocol based on the AODV routing protocol that it makes use of the remaining energy, signal strength and SNR of the MAC layer resources to setup a path.

  • PDF

A study on the Load-Balancing Algorithm for Improved AODV Protocol (개선된 AODV 부하분산 알고리즘에 관한 연구)

  • Son, Seok-Jin;Lee, Hung-Jae;Choi, Jin-Kyu
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.123-127
    • /
    • 2006
  • An Ad-hoc network which is composed of mobile nodes only should be able to distribute the traffic load evenly to the network so that the network could utilize its resources effectively However, most of researches have been concentrated in channel establishment level, not in channel reestablishment level. In this paper, the existing AODV routing protocol has been modified and upgraded to disperse the traffic load more quickly A node which uses the modified AODV routing protocol proposed in this paper broadcasts a control message to adjacent nodes, which announces congestion around the node. In order to verify the performance improvement of the proposed protocol, simulation study has been carried out by using ns2 simulator.

  • PDF

Routing Protocols for VANETs: An Approach based on Genetic Algorithms

  • Wille, Emilio C. G.;Del Monego, Hermes I.;Coutinho, Bruno V.;Basilio, Giovanna G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.542-558
    • /
    • 2016
  • Vehicular Ad Hoc Networks (VANETs) are self-configuring networks where the nodes are vehicles equipped with wireless communication technologies. In such networks, limitation of signal coverage and fast topology changes impose difficulties to the proper functioning of the routing protocols. Traditional Mobile Ad Hoc Networks (MANET) routing protocols lose their performance, when communicating between vehicles, compromising information exchange. Obviously, most applications critically rely on routing protocols. Thus, in this work, we propose a methodology for investigating the performance of well-established protocols for MANETs in the VANET arena and, at the same time, we introduce a routing protocol, called Genetic Network Protocol (G-NET). It is based in part on Dynamic Source Routing Protocol (DSR) and on the use of Genetic Algorithms (GAs) for maintenance and route optimization. As G-NET update routes periodically, this work investigates its performance compared to DSR and Ad Hoc on demand Distance Vector (AODV). For more realistic simulation of vehicle movement in urban environments, an analysis was performed by using the VanetMobiSim mobility generator and the Network Simulator (NS-3). Experiments were conducted with different number of vehicles and the results show that, despite the increased routing overhead with respect to DSR, G-NET is better than AODV and provides comparable data delivery rate to the other protocols in the analyzed scenarios.

A Study on the efficient AODV Routing Algorithm using Cross-Layer Design (크로스레이어 디자인을 이용한 효율적인 AODV 알고리즘에 관한 연구)

  • Nam, Ho-Seok;Lee, Tae-Hoon;Do, Jae-Hwan;Kim, Jun-Nyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11B
    • /
    • pp.981-988
    • /
    • 2008
  • In this paper, the efficient AODV routing algorithm in MANET is proposed. Because transmission channel has a high error rate and loss in MANET, the number of hops can't be regarded as an absolute network metric. After measuring FER periodically at the data link layer using cross-layer design, the scheme that every node forwards the weight of link status in the reserved field of AODV protocol is used. In order to find the efficient route, we design AODV to be able to select an optimal route that has a good channel status by evaluating the sum of weight. The proposed AODV improves throughput, routing overhead and average end-to-end delay in comparison with the generic AODV.

Local Flooding-based AODV Protocol in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 지역적인 플러딩 기반 AODV 프로토콜)

  • Choi, Hyun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.415-418
    • /
    • 2018
  • To reduce the flooding overhead of typical AODV, we propose a local flooding initiated by a destination. The proposed routing protocol determines the one-hop neighbor nodes around the shortest path between source and destination by overhearing, and periodically generate flooding at the destination to cope with topology changes. This flooding process involves only one-hop neighbor nodes around the shortest path for reducing the flooding overhead and forms multiple alternate paths around the shortest path. This makes it possible to seamlessly route to the newest shortest path around when the current routing path is disconnected.

  • PDF

An Efficient Location Aided Routing Protocol for Hybrid Wireless Networks (하이브리드 무선 네트워크에서 위치 정보를 사용한 효율적인 라우팅 프로토콜)

  • Kim, Sun-Il;Lee, Jun-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.117-125
    • /
    • 2009
  • In hybrid wireless networks, a mobile node in MANET can communicate with other mobile nodes as well as nodes in the Internet. Hybrid mobile networks help to expand the application domains of MANET from limited areas, such as military applications to more diverse and general application areas. Previous routing protocols in hybrid wireless networks have not taken advantage of location information of nodes in a network. By using location information of nodes, a routing protocol can reduce the overhead of control messages for efficient network operations. This paper proposes a routing protocol for hybrid mobile networks, called Location-aided AODV+ (LAp) that is based on ADOV+ and takes advantage of node's location information. Performance evaluation shows that LAp performs better than ADOV+ when there are a sufficient number of nodes in a network for route establishments.

A Performance Comparison of Routing Protocols for Mobile Ad hoc Networks using the NS-3 (NS-3를 사용한 이동 애드혹 네트워크용 라우팅 프로토콜 성능 비교)

  • Jang, Jaeshin;Ngo, Van-Vuong;Wie, Sunghong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.308-316
    • /
    • 2015
  • In this paper, we carried out performance comparison of four routing protocols that had been proposed for mobile ad hoc networks using the NS-3 network simulator. Those four routing protocols consist of two proactive routing protocols, DSDV(destination-sequenced distance vector) and OLSR(optimized link state routing), and two reactive routing protocols, AODV(ad-hoc on-demand distance vector) and DSR(dynamic source routing). Two performance metrics, system throughput and packet delivery ratio, are adopted and performance evaluation was carried out in a square communication area where each communicating mobile node moves independently. Numerical results show that the AODV routing protocol provides the best performance among those four routing protocols.