• Title/Summary/Keyword: AODV routing protocol

Search Result 208, Processing Time 0.028 seconds

A Study on Improvement of Routing Performance for Wireless Mesh Networks (무선 메시 네트워크의 라우팅 성능 개선 연구)

  • Kim, Ho-Cheal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2422-2429
    • /
    • 2013
  • WMN is considered as a core methodology to provide mobile wireless network service with multi-hop routing feature. It has a merit that can be easily deployed by utilization of protocols for MANET. However, it has differences in supporting multiple networks and channels, network architecture, and so on. Especially, in case of routing protocols, to apply them intactly to WMN can be a cause of low performance because of do not moving mesh routers. AODV seems like suitable for WMN among the various routing protocols for MANET. However, it has a defect in scalability. In this paper, an enhanced AODV routing method for WMN was proposed. The proposed method was designed to be suitable to the architecture of WMN by use of layering and localizing the broadcasting domain.

Enhanced OLSR Routing Protocol Using Link-Break Prediction Mechanism for WSN

  • Jaggi, Sukhleen;Wasson, Er. Vikas
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.259-267
    • /
    • 2016
  • In Wireless Sensor Network, various routing protocols were employed by our Research and Development community to improve the energy efficiency of a network as well as to control the traffic by considering the terms, i.e. Packet delivery rate, the average end-to-end delay, network routing load, average throughput, and total energy consumption. While maintaining network connectivity for a long-term duration, it's necessary that routing protocol must perform in an efficient way. As we discussed Optimized Link State Routing protocol between all of them, we find out that this protocol performs well in the large and dense networks, but with the decrease in network size then scalability of the network decreases. Whenever a link breakage is encountered, OLSR is not able to periodically update its routing table which may create a redundancy problem. To resolve this issue in the OLSR problem of redundancy and predict link breakage, an enhanced protocol, i.e. S-OLSR (More Scalable OLSR) protocol has been proposed. At the end, a comparison among different existing protocols, i.e. DSR, AODV, OLSR with the proposed protocol, i.e. S-OLSR is drawn by using the NS-2 simulator.

Improving the Performance of AODV(-PGB) based on Position-based Routing Repair Algorithm in VANET

  • Jung, Sung-Dae;Lee, Sang-Sun;Oh, Hyun-Seo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1063-1079
    • /
    • 2010
  • Vehicle ad hoc networks (VANET) are one of the most important technologies to provide various ITS services. While VANET requires rapid and reliable transmission, packet transmission in VANET is unstable because of high mobility. Many routing protocols have been proposed and assessed to improve the efficiency of VANET. However, topology-based routing protocols generate heavy overhead and long delay, and position-based routing protocols have frequent packet loss due to inaccurate node position. In this paper, we propose a position-based routing repair algorithm to improve the efficiency of VANET. This algorithm is proposed based on the premise that AODV (-PGB) can be used effectively in VANET, if the discovery, maintenance and repair mechanism of AODV is optimized for the features of VANET. The main focus of this algorithm is that the relay node can determine whether its alternative node exits and judge whether the routing path is disconnected. If the relay node is about to swerve from the routing path in a multi-hop network, the node recognizes the possibility of path loss based on a defined critical domain. The node then transmits a handover packet to the next hop node, alternative nodes and previous node. The next node repairs the alternative path before path loss occurs to maintain connectivity and provide seamless service. We simulated protocols using both the ideal traffic model and the realistic traffic model to assess the proposed algorithm. The result shows that the protocols that include the proposed algorithm have fewer path losses, lower overhead, shorter delay and higher data throughput compared with other protocols in VANET.

A Secure Routing Protocol in MANET based on Malicious behavior Pattern of Node and Trust Level (노드의 악의적 행위패턴 및 신뢰수준 기반의 MANET Secure 라무팅 방안)

  • Park, Seong-Seung;Park, Gun-Woo;Ryu, Keun-Ho;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.103-117
    • /
    • 2009
  • In MANET(Mobile Ad-Hoc Network), providing security to routing has been a significant issue recently. Existing studies, however, focused on either of secure routing or packet itself where malicious operations occur. In this paper, we propose SRPPnT(A Secure Routing Protocol in MANET based on Malicious Pattern of Node and Trust Level) that consider both malicious behavior on packet and secure routing. SRPPnT is identify the node where malicious activities occur for a specific time to compose trust levels for each node, and then to set up a routing path according to the trust level obtained. Therefore, SRPPnT is able to make efficient countermeasures against malicious operations. SRPPnT is based on AODV(Ad-Hoc On-Demand Distance Vector Routing). The proposed SRPPnT, from results of the NS-2 network simulation. shows a more prompt and accurate finding of malicious nodes than previous protocols did, under the condition of decreased load of networks and route more securely.

A study on Advanced Load-Balanced Ad hoc Routing Protocol

  • Lee, Joo-Yeon;Lee, Cheong-Jae;Kim, Yong-Woo;Song, Joo-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1433-1436
    • /
    • 2004
  • The ad hoc network is a collection of wireless mobile nodes dynamically forming a temporary network without the use of any existing network infrastructure of centralized administration. Load-Balanced Ad hoc Routing(LBAR) protocol is an on-demand routing protocol intended for delay-sensitive applications where users are most concern with packet transmission delay. Although LBAR mechanism is a novel load balancing routing protocol for ad hoc network, it has own limitation in route path maintenance phase. Therefore, in this paper, we propose Advanced Load-Balanced Ad hoc Routing(A-LBAR) that is delay-sensitive and has an efficient path maintenance scheme. The robust path maintenance scheme is maintained by considering about nodal loads all over network and misbehavior of overloaded or selfish nodes. The proposed scheme provides good performance over DSR and AODV in terms of packet delay and packet loss rate when some misbehaving nodes exist in the network.

  • PDF

Dynamic Adjustment of Hello and Hold Timer in AODV Routing Protocol

  • Godfrey, Daniel;Kim, Ki-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.251-259
    • /
    • 2020
  • Ad hoc On-demand Distance Vector (AODV) protocol and its variants employ two important timers, hello and hold timer to keep track of topology changes. Moreover, hold timer is computed by multiplying constant value to hello timer. But, this configuration leads to inaccurate settings of hold timer. To solve this problem, in this paper, we propose a new dynamic adjustment of hello and hold timer scheme by removing dependency between them. A new metric to measure mobility is applied into hello timer, while expected link lifetime does holder timer. Simulation results show a significant reduction in the number of messages, a fact suggesting that it is possible to maintain and in some cases improve the performance of AODV with a minimum amount of messages released into the network.

Performance Evaluation of the AODV-Based Extended Network Lifetime Protocol Using the Energy Mean Value over MANET (MANET환경에서 AODV 기반 에너지 평균값을 적용한 네트워크 수명연장 프로토콜의 성능평가)

  • Kim Jin-Man;Jang Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1189-1194
    • /
    • 2005
  • An Ad-hoc network which do not use wired and base station system is composed the group of mobile and wireless nodes. That is various type of restriction. The biggest restriction is depend on the confined energy of battery. The network is devide more than two, if one of nodes consumed all energy that node can no longer participate to network. In recent years, the many number of studies research not only energy saving but also the networks lifetime extension which is to solve this problem. In this paper, we examine a AODV routing protocol which is modified to improve networks lifetime in mobile ad-hoc network. The one of improvement for AODV protocol is maximize the networks lifetime as apply Energy Mean Value algorithm which considerate node energy. We show the effectiveness for modified AODV(New-AODV) compared with AODV using NS-2(Network Simulator 2) the various performance metrics.

An Internet Gateway Based Link State Routing for Infrastructure-Based Mobile Ad Hoc Networks (인프라구조 기반의 이동 애드혹 네트워크를 위한 인터넷 게이트웨이 중심의 링크상태 라우팅 프로토콜)

  • Lee, Sung Uk;Ngo, Chi-Trung;Han, Trung-Dinh;Kim, Je-Wook;Oh, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.10
    • /
    • pp.859-876
    • /
    • 2012
  • Since the existing protocols separated mobility management part and routing protocol part in their design and used a flooding, they suffer from the high control overhead, thereby limiting performance. In this paper, we use a tree-based mobility management method and present a simple and efficient routing protocol that exploits the topology information which is built additionally through mobility management. Thus, the mobility management and the routing protocol closely cooperate to optimize control overhead. Furthermore, we use a progressive path discovery method to alleviate traffic congestion around IG and a unicast-based broadcast method to increase the reliability of message delivery and to judge link validity promptly. The proposed protocol reduces control overhead greatly and works in a stable manner even with the large number of nodes and high mobility. This was proven by comparing with the AODV protocol that employs the hybrid mobility management protocol.

A Study on the Minimum Route Cost Routing Protocol for 6LoWPAN (6LoWPAN을 위한 최소경로비용 라우팅 프로토콜에 관한 연구)

  • Kim, Won-Geun;Kim, Jung-Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • It is recently issued scalability, mobility and external internet connection on Wire-less sensor network. The low power wireless sensor networks based on IPv6 technology 6LoWPAN technology is being standardized in the IETF. This paper for the 6LoWPAN environment based on the routing protocol LOAD, route cost applied the packet re-transmission rate which follows in Link Qualities price which uses at course expense and packet transmission Minimum route Cost routing protocol where does on the course wherethe smallest packet re-transmission becomes accomplished proposed. The technique which proposes compared and LOAD and AODV that about 13%, about 16% energy consumption is few respectively averagely, Energy of the entire network equally, used and energy effectiveness and improvement of network life time experiment led and confirmed.

Performance Variations of AODV, DSDV and DSR Protocols in MANET under CBR Traffic using NS-2.35

  • Chandra, Pankaj;Soni, Santosh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.13-20
    • /
    • 2022
  • Basically Mobile Ad Hoc Network (MANET) is an autonomous system with the collection of mobile nodes, these nodes are connected to each other by using wireless networks. A mobile ad hoc network poses this quality which makes topology in dynamic manner. As this type of network is Ad Hoc in nature hence it doesn't have fixed infrastructure. If a node wishes to transfer data from source node to a sink node in the network, the data must be passed through intermediate nodes to reach the destination node, hence in this process data packet loss occurs in various MANET protocols. This research study gives a comparison of various Mobile Ad Hoc Network routing protocols like proactive (DSDV) and reactive (AODV, DSR) by using random topology with more intermediate nodes using CBR traffic. Our simulation used 50, 100, and 150 nodes variations to examine the performance of the MANET routing protocols. We compared the performance of DSDV, AODV and DSR, MANET routing protocols with the result of existing protocol using NS-2 environment, on the basis of different performance parameters like Packet Delivery Ratio, average throughput and average end to end delay. Finally we found that our results are better in terms of throughput and packet delivery ratio along with low data loss.