• 제목/요약/키워드: ANSYS (FE)

검색결과 133건 처리시간 0.023초

Flutter analysis of long-span bridges using ANSYS

  • Hua, X.G.;Chen, Z.Q.;Ni, Y.Q.;Ko, J.M.
    • Wind and Structures
    • /
    • 제10권1호
    • /
    • pp.61-82
    • /
    • 2007
  • This paper presents a novel finite element (FE) model for analyzing coupled flutter of long-span bridges using the commercial FE package ANSYS. This model utilizes a specific user-defined element Matrix27 in ANSYS to model the aeroelastic forces acting on the bridge, wherein the stiffness and damping matrices are expressed in terms of the reduced wind velocity and flutter derivatives. Making use of this FE model, damped complex eigenvalue analysis is carried out to determine the complex eigenvalues, of which the real part is the logarithm decay rate and the imaginary part is the damped vibration frequency. The condition for onset of flutter instability becomes that, at a certain wind velocity, the structural system incorporating fictitious Matrix27 elements has a complex eigenvalue with zero or near-zero real part, with the imaginary part of this eigenvalue being the flutter frequency. Case studies are provided to validate the developed procedure as well as to demonstrate the flutter analysis of cable-supported bridges using ANSYS. The proposed method enables the bridge designers and engineering practitioners to analyze flutter instability by using the commercial FE package ANSYS.

An iterative approach for time-domain flutter analysis of bridges based on restart technique

  • Zhang, Wen-ming;Qian, Kai-rui;Xie, Lian;Ge, Yao-jun
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.171-180
    • /
    • 2019
  • This paper presents a restart iterative approach for time-domain flutter analysis of long-span bridges using the commercial FE package ANSYS. This approach utilizes the recursive formats of impulse-response-function expressions for bridge's aeroelastic forces. Nonlinear dynamic equilibrium equations are iteratively solved by using the restart technique in ANSYS, which enable the equilibrium state of system to get back to last moment absolutely during iterations. The condition for the onset of flutter instability becomes that, at a certain wind velocity, the amplitude of vibration is invariant with time. A long-span suspension bridge was taken as a numerical example to verify the applicability and accuracy of the proposed method by comparing calculated results with wind tunnel tests. The proposed method enables the bridge designers and engineering practitioners to carry out time-domain flutter analysis of bridges in commercial FE package ANSYS.

정착판 GFRP 근(Rebar)의 모르타르 인발거동에 관한 시험연구 (An Experimental Study on the Pull-Out Behaviors of Headed GFRP Rebar in Mortar)

  • 지효선
    • 한국산학기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.2797-2803
    • /
    • 2012
  • 본 논문은 모르타르에 근입되어 인발하중을 받는 정착판 GFRP 근의 인발거동을 기술하고 있다. 정착판 GFRP 근의 모르타르 시험체를 5개 제작하여 인발시험을 수행하였다. 시험 결과를 검증하기 위해 ANSYS 상용프로그램을 이용한 유한요소해석을 수행하였으며 시험결과와 비교되었다. 시험결과 모르타르에 매입된 정착판 GFRP 근의 파열 파괴강도식은 45도 콘(Cone)파괴 이론 보다는 CCD(Concrete Capacity Design)파괴이론을 적용하는 것이 타당한 것으로 나타났다.

On the FE Modeling of FRP-Retrofitted Beam-Column Subassemblies

  • Ronagh, H.R.;Baji, H.
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권2호
    • /
    • pp.141-155
    • /
    • 2014
  • The use of fiber reinforced polymer (FRP) composites in strengthening reinforced concrete beam-column subassemblies has been scrutinised both experimentally and numerically in recent years. While a multitude of numerical models are available, and many match the experimental results reasonably well, there are not many studies that have looked at the efficiency of different finite elements in a comparative way in order to clearly identify the best practice when it comes to modelling FRP for strengthening. The present study aims at investigating this within the context of FRP retrofitted reinforced concrete beam-column subassemblies. Two programs are used side by side; ANSYS and VecTor2. Results of the finite element modeling using these two programs are compared with a recent experimental study. Different failure and yield criteria along with different element types are implemented and a useful technique, which can reduce the number of elements considerably, is successfully employed for modeling planar structures subjected to in-plane loading in ANSYS. Comparison of the results shows that there is good agreement between ANSYS and VecTor2 results in monotonic loading. However, unlike VecTor2 program, implicit version of ANSYS program is not able to properly model the cyclic behavior of the modeled subassemblies. The paper will be useful to those who wish to study FRP strengthening applications numerically as it provides an insight into the choice of the elements and the methods of modeling to achieve desired accuracy and numerical stability, a matter not so clearly explored in the past in any of the published literature.

RC beams retrofitted using external bars with additional anchorages-a finite element study

  • Vasudevan, G.;Kothandaraman, S.
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.415-428
    • /
    • 2015
  • Study on flexural retrofitting of RC beams using external bars with additional intermediate anchorages at soffit is reported in this paper. Effects of varying number of anchorages in the external bars at soffit were studied by finite element analysis using ANSYS 12.0 software. The results were also compared with available experimental results for beam with only two end anchorages. Two sets of reference and retrofitted beam specimens with two, three, four and five anchorages were analysed and the results are reported. FE modeling and non-linear analysis was carried out by discrete reinforcement modeling using Solid65, Solid45 and Link8 elements. Combin39 spring elements were used for modeling the frictional contact between the soffit and the external bars. The beam specimens were subjected to four-point bending and incremental loading was applied till failure. The entire process of modeling, application of incremental loading and generation of output in text and graphical format were carried out using ANSYS Parametric Design Language.

블로우 몰딩 공정에서 분사 압력이 성형 두께에 미치는 영향에 관한 연구 (Study on the Effect of Gas Pressure on Bottle Wall Thickness in the Blow Molding Process)

  • 김동환;설상석
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.36-44
    • /
    • 2020
  • This study analyzed the deformation behavior of the high density polyethylene (HDPE) bottle in the blow molding process. We carried out finite element (FE) simulations using ANSYS Polyflow. First, the axisymmetric model was executed by 2D FE-simulation to determine the change of bottle wall thickness during the molding process. Then, the square model of the bottle was executed by 3D FE-simulation to gauge the effects of gas pressure on the change of wall thickness. The experiment results showed that the FE-simulations were able to upgrade the quality of the HDPE bottle in the blow molding process. These results can be used as guidance in adjusting gas pressure, as well as be extended for further study to determine process parameters such as temperatures, forming velocity, parison shape, etc.

Experimental and numerical study of large high strength bolt shear connector embedded in HFRC

  • Yuliang He;Zhengxin Wang;Weiming Wu;Ying Yang;Yiqiang Xiang
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.197-213
    • /
    • 2023
  • To investigate the static properties of large high strength bolt shear connector in hybrid fiber-reinforced concrete (HFRC) and normal concrete (NC), eight push-out test specimens with single/double nut and HFRC/NC slabs were designed and push-out tests were conducted. A fine 3D nonlinear finite element (FE) model including HFRC constitutive model was established by using ANSYS 18.0, and the test results were used to verify FE models of the push-out test specimens. Then a total of 13 FE models were analyzed with various parameters including fiber volume fractions of HFRC, bolt diameter and thickness of steel flange. Finally, the empirical equations considering the contribution of polypropylene fiber (PF) and steel fiber (SF) obtained from the regression of the test results and FE analysis were recommended to evaluate the load-slip curve and ultimate capacity of the large high strength bolt shear connector embedded in HFRC/NC.

Fe-금속 산화물 계면에서 연소반응의 유한 요소해석 (Finite Element Analysis of Combustion Reaction on Iron and Metal Oxides Interface)

  • 구문선;최용
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.118.2-118.2
    • /
    • 2017
  • Combustion behavior of Fe, CuO, NiO, ZnO and $Fe_2O_3$ powder mixture was carried out by finite element method (FEM) to understand a reaction at iron and metal oxide interface. The FEM was done by using ANSYS Fluent 17.0. Initial and boundary conditions are 1 atmosphere, room temperature, 0.1MPa of oxygen partial pressure, $T_{S1}=1127^{\circ}C$, $T_{S2}=327^{\circ}C$ for a cylindrical shape specimen with dia. $35{\times}80$ [mm]. The maximum combustion temperature is $1537^{\circ}C$ for the condition of conduction, convection and radiation. The combustion temperature and rate are about $847^{\circ}C$ and 3.9mm/sec, respectively. The combustion wave is enough to make ternary ferrite phase like $CuNiZnFe_2O_3$.

  • PDF

Flutter stability of a long-span suspension bridge during erection

  • Han, Yan;Liu, Shuqian;Cai, C.S.;Li, Chunguang
    • Wind and Structures
    • /
    • 제21권1호
    • /
    • pp.41-61
    • /
    • 2015
  • The flutter stability of long-span suspension bridges during erection can be more problematic and more susceptible to be influenced by many factors than in the final state. As described in this paper, numerical flutter stability analyses were performed for the construction process of Zhongdu Bridge over Yangtze River using the commercial FE package ANSYS. The effect of the initial wind attack angle, the sequence of deck erection, the stiffness reduction of stiffening girders, the structural damping, and the cross cables are discussed in detail. It was found that the non-symmetrical sequence of deck erection was confirmed to be aerodynamically favourable for the deck erection of long-span suspension bridges and the best erection sequence should be investigated in the design phase. While the initial wind attack angle of $-3^{\circ}$ is advantageous for the aerodynamic stability, $+3^{\circ}$ is disadvantageous compared with the initial wind attack angle of $0^{\circ}$ during the deck erection. The stiffness reduction of the stiffening girders has a slight effect on the flutter wind speed of the suspension bridge during erection, but structural damping has a great impact on it, especially for the early erection stages.

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.