• Title/Summary/Keyword: ANSYS

Search Result 2,180, Processing Time 0.024 seconds

ANSYS 피로해석 모듈을 이용한 CANDU 6 핵연료채널 응력해석 및 ASME Code에 따른 해석절차 개발

  • 최창용;김정규
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.418-426
    • /
    • 1995
  • 설계의 신뢰성은 응력해석을 통하여 확인될 수 있으며, 해석결과는 대상 부품의 구조적 건전성을 입증하는 근거가 된다. 본 보고서는 ANSYS의 피로해석 모듈을 이용한 CANDU 6핵연료채널의 응력해석 및 ASME Code에 따른 해석 절차 개발을 소개하였다. 응력해석은 ASME Code Section III NB-3200 의 $\ulcorner$Design by Analysis$\lrcorner$에 기초한 해석절차에 따라 수행하였으며, 체계적인 해석을 위해 자료 처리용 ANSYS 매크로 및 FORTRAN 프로그램을 개발하였다. 해석은 각 조건에 따라 기계적응력과 열응력해석으로 분리하여 수행한 후 조합되었으며, ANSYS 피로해석 모듈을 이용하여 선정된 절점들의 기계적응력과 열응력의 합에 대한 최대응력강도범위를 계산하였다. 응력해석 결과, CANDU 6 핵연료채널의 구조적 건전성이 입증되었으며, ANSYS를 이용한 ASME Code해석절차가 확립되어 CANDU 원자로 해석의 신뢰성을 크게 향상 시켰음은 물론 독자적인 수행을 위한 발판을 마련하였다.

  • PDF

RC beams retrofitted using external bars with additional anchorages-a finite element study

  • Vasudevan, G.;Kothandaraman, S.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.415-428
    • /
    • 2015
  • Study on flexural retrofitting of RC beams using external bars with additional intermediate anchorages at soffit is reported in this paper. Effects of varying number of anchorages in the external bars at soffit were studied by finite element analysis using ANSYS 12.0 software. The results were also compared with available experimental results for beam with only two end anchorages. Two sets of reference and retrofitted beam specimens with two, three, four and five anchorages were analysed and the results are reported. FE modeling and non-linear analysis was carried out by discrete reinforcement modeling using Solid65, Solid45 and Link8 elements. Combin39 spring elements were used for modeling the frictional contact between the soffit and the external bars. The beam specimens were subjected to four-point bending and incremental loading was applied till failure. The entire process of modeling, application of incremental loading and generation of output in text and graphical format were carried out using ANSYS Parametric Design Language.

Three-Dimensional Seismic Analysis for Spent Fuel Storage Rack

  • Lee, Gyu-Mahn;Kim, Kang-Soo;Park, Keun-Bae;Park, Jong-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.91-98
    • /
    • 1998
  • Time history analysis is usually performed to characterize the nonlinear seismic behavior of a spent fuel storage rack(SFSR). In the past, the seismic analyses of the SFSR were performed with two-dimensional planar models, which could not account for torsional response and simultaneous multi-directional seismic input In this study, three-dimensional seismic analysis methodology is developed for the single SFSR using the ANSYS code. The 3D- Model can be used to determine the nonlinear behavior of the rack, i.e., sliding, uplifting, and impact evaluation between the fuel assembly and rack, and rack and the pool wall, This paper also reviews the 3-D modeling of the SFSR and the adequacy of the ANSYS for the seismic analysis. AS a result of the adquacy study, the method of ANSYS transient analysis with acceleration time history is suitable for the seismic analysis of highly nonlinear structure such as an SFSR but it isn't appropriate to use displacement time history of seismic input.

  • PDF

Design optimization of a hollow shaft through MATLAB and simulation using ANSYS

  • Mercy, J. Rejula;Stephen, S. Elizabeth Amudhini;Edna, K. Rebecca Jebaseeli
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.259-266
    • /
    • 2022
  • Non-Traditional Optimization methods are successfully used in solving many engineering problems. Shaft is one of important element of machines and it is used to transmit power from a machine which produces power to a machine which absorbs power. In this paper, ten non-traditional optimization methods that are ALO, GWO, DA, FPA, FA, WOA, CSO, PSO, BA and GSA are used to find minimum weight of hollow shaft to get global optimal solution. The problem has two design variables and two inequality constraints. The comparative results show that the Particle Swarm Optimization outperforms other methods and the results are validated using ANSYS.

A Study on the Fatigue Life of Planer Miller Spindle System Using nCode (nCode를 이용한 플래너 밀러 주축계 구조물의 피로수명에 관한 연구)

  • Kim, Chae-Sil;Park, Pil-Geo;Lee, Seong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1091-1095
    • /
    • 2022
  • Dynamic stability of the main spindle system shall be ensured when operating the planer miller for remanufacturing the planer miller. This paper explains the analysis process that determines the stability of the planer miller spindle system in the design stage using ANSYS, an analysis program. First, the dynamic stability of the main spindle system is verified through risk speed analysis in the rated RPM range of the planer miller through ANSYS Modal Analysis, and second, the stability and durability of the main spindle system are verified through ANSYS nCode Analysis.

Optimal design of robot for inspection and maintenance of pressurizer in the nuclear power plant (원자력발전소 가압기 점검보수 로봇의 최적화 설계)

  • 엄재섭;정승호;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1696-1699
    • /
    • 1997
  • The robot mainpulator for inspection of pressurizer in the nuclear power plant has been developed, which consists of four parts : 2 arms, movable gripper, base frame, contorl console. To extract the damaged electric heating rod inside pressurizer, the gripper has been developed using wire lope and self-locking mechanism. for the examination of the structural stability of the robot manipulator, stress analysis is performed by using the ANSYS code.

  • PDF

Parameters Identification of Gantry Crane By Using ANSYS

  • Kim, Hwan-Seong;Nguyen, Tuong-Long
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.62.5-62
    • /
    • 2002
  • The main purpose of this paper is to identify the important parameters and to examine their relations to one another while gantry crane structure was modeled. The important elements of the structural analysis are included, such as the stiffness matrix and its relations to the degrees of freedom, the displacement, and frequency responses. To investigate these relations, the parametric modeling of a dynamic system is solved by using the finite element method (ANSYS-Program). Furthermore, EXPRESS schema and C-FAR (change favorable representation) are described how to change the frame length of gantry crane which influences other elements. Since this relationship is established, the results may...

  • PDF

A study of manufacture of IPMC actuator and the high molecule finite element analysis. (IPMC 구동기의 제작 및 고분자 해석기법에 관한 연구)

  • Kim, Se-Hun;Cho, Seok-Min;Lee, Dong-Weon;Park, Young-Chul;Kang, Joung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.24-30
    • /
    • 2008
  • The laminate IPMC actuator have been developed with a commercial Nafion film and platinum electrodes. Equivalent beam and equivalent bimorph beam models for IPMC(Ionic Polymer-Metal Composite) actuators are described. By using a beam equation with estimated physical properities and actuation displacements of a cantilevered IPMC actuator are estimated. And Finite element analysis(FEA) was done by ANSYS.

  • PDF

A Study on Safety of Air Bridge by Using ANSYS (ANSYS를 이용한 항공기 탑승교 안전에 관한 연구)

  • Chae Soo Hyun;Jung Soo Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.1
    • /
    • pp.45-56
    • /
    • 2005
  • The air bridge that connects an airplane with air terminal is important facilities that help people get in and out an airplane safely and conveniently. As the number of people who takes airplane has been increasing, an unexpected accident or a disorder on an air bridge can lead to the loss of passenger's lives or a great damage of airplane. This paper suggests a method to secure the safety of an air bridge.

Enhancement of Structural Safety Using Piezoelectric Bimorph

  • Loh, Byoung-Gook
    • International Journal of Safety
    • /
    • v.6 no.1
    • /
    • pp.22-25
    • /
    • 2007
  • Damping out high frequency low amplitude structural vibrations using PZT bimorph is presented. Static and Dynamic analyses of the piezoelectric bimorph bender were performed. Three layer piezoelectric actuators were modeled with SOLID5 coupled-field elements using ANSYS. Static deflection and modal analyses of the piezoelectric bimorph bender are presented. Proper tuning of the values of the resistor and inductor in the shunt circuit is required for maximum vibration suppression.