• Title/Summary/Keyword: ANSI 흉부 팬텀

Search Result 3, Processing Time 0.014 seconds

A Study for Effects of Image Quality due to Scatter Ray produced by Increasing of Tube Voltage (관전압 증가에 기인한 산란선 발생의 화질 영향 연구)

  • Park, Ji-Koon;Jun, Je-Hoon;Yang, Sung-Woo;Kim, Kyo-Tae;Choi, Il-Hong;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.663-669
    • /
    • 2017
  • In diagnostic medical imaging, it is essential to reduce the scattered radiation for the high medical image quality and low patient dose. Therefore, in this study, the influence of the scattered radiation on medical images was analyzed as the tube voltage increases. For this purpose, ANSI chest phantom was used to measure the scattering ratio, and the scattering effect on the image quality was investigated by RMS evaluation, RSD and NPS analysis. It was found that the scattering ratio with increasing x-ray tube voltage gradually increased to 48.8% at 73 kV tube voltage and to 80.1% at 93 kV tube voltage. As a result of RMS analysis for evaluating the image quality, RMS value according to increase of tube voltage was increased, resulting in low image quality. Also, the NPS value at 2.5 lp/mm spatial frequency was increased by 20% when the tube voltage was increased by 93 kV compared to the tube voltage of 73 kV. From this study, it can be seen that the scattering radiation have a significant effect on the image quality according to the increase of x-ray tube voltage. The results of this study can be used as basic data for the improvement of medical imaging quality.

The Effects of Image Quality due to Scattering X-ray according to increasing Patient Thickness (피사체 두께에 따른 산란선 발생이 화질에 미치는 영향)

  • Park, Ji-Koon;Yang, Sung-Woo;Jun, Jae-Hoon;Cho, Su-Yeon;Kim, Kyo-Tae;Heo, Ye-Ji;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.671-677
    • /
    • 2017
  • In this study, scattering factors affecting the quality of medical images were quantitatively analyzed and investigated. MCNPX simulation was conducted by using ANSI phantom, made of tissue equivalent materials, to calculate the scattering ratio occurred by the increase of the object thickness. Then, the result of the simulation was compared with the result of actual radiation measurement. In addition, we evaluated the image quality by the RMS evaluation, RSD and NPS analysis using X-ray images acquired with increasing object thickness. Furthermore, the scattering ratio was analyzed by increasing the thickness of acrylic phantom on chest phantom. The result showed that the scattering ratio was increased to 57.2%, 62.4%, and 66.8% from 48.9%, respectively, when the acrylic phantom thickness was increased by 1 inch from 6.1 inches. The results of MCNPX simulation and the actual measured scattering dose showed similar results. Also, as a result of RMS measurement from acquired x-ray images, the standard deviation decreased as the object thickness increased. However, in the RSD analysis considering the average incident dose, the results were increased from 0.028 to 0.039, 0.051, 0.062 as the acrylic phantom thickness was increased from 6.1 inches to 7.1 inch, 8.1 inch, and 9.1 inch, respectively. It can be seen that the increase of the scattering effect due to the increase of the object thickness reduces the SNR. Also, the NPS results obtained by measuring scattered radiation incident on the detector resulted in the increase of the noise as the object thickness increased.

The Study on Scattered Radiation Effects According to Acquisition of X-ray Imaging using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 X선 의료영상 획득 시 산란선 발생 영향 연구)

  • Park, Ji-Koon;Kang, Sang-Sik;Yang, Seung-Woo;Heo, Ye-Ji;Kim, Kyo-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.549-555
    • /
    • 2018
  • The medical imaging technique images the contrast formed based on the difference in absorption coefficient of X-rays which changes according to the composition and thickness of the object. At this time, not only primary rays entering the image detector but also scattered rays greatly affect the image quality. Therefore, in this paper, Forward scattering rate and Scattered to primary ratio analysis were performed through Monte Carlo simulation in order to consider influence of scattered ray generated according to object thickness and radiation exposure area change on image quality. In the study, the Forward scattering rate corresponding to the thickness of the object was analyzed at a maximum of 15.3%p and the Scattered to primary ratio was analyzed at 2.00 to 4.54, but it was analyzed as maintaining a constant value for radiation exposure area change. Based on these results, the thickness of the object should be considered as a factor influencing the quality of the image, but radiation exposure area verified that it is a factor that does not affect the image quality. We believe that the results of this research can be utilized as basic information of scattered radiation to improve image quality.