• Title/Summary/Keyword: ANR1

Search Result 190, Processing Time 0.018 seconds

On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modeling

  • Liu, Yang;Wang, Xiaofeng;Liu Li;Wu, Bin;Yang, Qin
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.47-61
    • /
    • 2022
  • The present research investigates the dynamic behavior of a rotating functionally graded (FG) nonlocal cylindrical beam. The cylindrical beam is mathematically modeled via third-order beam theory linked with nonlocal strain gradient theory. The tube structure is made of functionally graded materials composed of Aluminum oxide coated on the Nickel, which the mechanical properties vary in the tube radius direction according to the power law. The bending harmonic force is applied in the tube length middle. The nonlocal spinning equations of the tube are derived via the energy method of the Hamilton principle, and they are solved via a robust numerical procedure for different boundary conditions. The main application of the rotating nanostructures is for the production of small-scale motors and devices and the drug-delivery application, the presented results can help the researcher have a better view regarding the different conditions.

Intelligent computer modelling and simulation for the large amplitude of nano systems

  • Yi, Wenjuan
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • The nonlinear dynamic behavior of a nonuniform small-scale nonlocal beam is investigated in this work. The nanobeam is theoretically modeled using the nonlocal Eringen theory, as well as a few of Von-nonlinear Kármán's theories and the classical beam theory. The Hamilton principle extracts partial differential equations (PDE) of an axially functionally graded (AFG) nano-scale beam consisting of SUS304 and Si3N4 throughout its length, and an elastic Winkler-Pasternak substrate supports the tapered AFG nanobeam. The beam thickness is a function of beam length, and it constantly varies throughout the length of the beam. The numerical solution strategy employs an iteration methodology connected with the generalized differential quadratic method (GDQM) to calculate the nonlinear outcomes. The nonlinear numerical results are presented in detail to examine the impact of various parameters such as nonlinear amplitude, nonlocal parameter, the component of the elastic foundation, rate of cross-section change, and volume fraction parameter on the linear and nonlinear free vibration characteristics of AFG nanobeam.

The determination of effect of TiO2 on dynamic behavior of scaled WPC warehouse by OMA

  • Tuhta, Sertac
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.65-72
    • /
    • 2022
  • The dynamic properties (frequencies, mode shapes, damping ratios) of the scaled WPC warehouse are compared using the operational modal analysis approach to the dynamic parameters (frequencies, mode shapes, damping ratios) of the full outer surface of titanium dioxide, 70 micron in thickness. Micro tremor ambient vibration data on ground level was used to provide ambient excitation. For the output-only modal identification, Enhanced Frequency Domain Decomposition (EFDD) was used. This study discovered a strong correlation between mode shapes. Titanium dioxide applied to the entire outer surface of the scaled WPC warehouse results in an average 14.05 percent difference in frequency values and 7.61 percent difference in damping ratios, demonstrating that nanomaterials can be used to increase rigidity in structures, or for reinforcement. Another significant finding in the study was the highest level of adherence of titanium dioxide and similar nanomaterials mentioned in the introduction to WPC structure surfaces.

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.

Developing children's non-cognitive skills by early entrepreneurship education

  • Zhaojun Pang;Heng Zhang
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.93-101
    • /
    • 2023
  • This research aims to explore the influence of early entrepreneurial education on cognitive and non-cognitive abilities of male sixth-grade primary school pupils using a randomized pretest-posttest control group design. A total of 45 students were randomly allocated to experimental, active-control, and control groups using a multi-stage random selection procedure. The experimental group was taught entrepreneurship using the Bizworld entrepreneurship education package. The active control group did not get entrepreneurship education but was instructed on a non-entrepreneurship-related issue (hygiene). The Control group received no instruction. The findings revealed that early entrepreneurial education skills impacted noncognitive abilities (such as risk-taking propensity, creativity, self-efficacy, persistence, and need for achievement). Early entrepreneurship education seems to be an effective technique for developing children's non-cognitive abilities in the late years of primary school. As a result, entrepreneurship education may be taught in primary schools, emphasizing the development of non-cognitive abilities, which will affect children's individual, educational, social, and vocational futures and can have long-term advantages for students, families, and society.

Computational simulation of intelligent big data analysis under nanotube rotation

  • Lunan Li;Allam Maalla
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.67-80
    • /
    • 2023
  • Economic investigation is one of the main issues regarding the design and production of small-scale structures. This paper concerns the creation, implementation, and economic aspects of the cross-section profile of small-scale structures regarding the dynamic response of the free and forced vibration behavior of spinning nanoscale beams based on big data analysis. According to the financial analysis, the three practical non-uniform functions of cross-sections are compared to the uniform beam in the same weight and the equal material used. The previous studies reported that the uniform beams are more stable and contain a better frequency response based on the mechanical analysis. Still, concerning the economic investigation, which means the considered structures should have equal length and have the same weight in the aspect of material used, the conclusion can be different from the mechanical aspect. Consequently, in the current paper, the dynamic response along with computer technology as well as the big data analysis of the free and forced vibration of the nanobeam regarding the economic shape of the cross-section is scrutinized.

Sports injury treatment and sports rehabilitation employing the Nanoparticles containing zinc oxide

  • Zhichao Ma;Jie Qi;Weiwei Xun;Yaonan Li
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.67-74
    • /
    • 2023
  • The combination of physical activities and individual skills in sports creates an entertaining and competitive environment governed by a set of rules. In today's world, sports attract significant attention and are approached differently by various groups. Inevitably, injuries occur in sports, significantly impacting an athlete's performance and ability to participate in exercises and competitions. Addressing this issue, one of the crucial measures involves restoring the athlete's ability to engage in sports and compete. Sports rehabilitation serves as a treatment to mitigate the effects of injuries, and when combined with surgery, it can expedite the recovery process. Therefore, the primary objective of this study is to utilize a biocompatible technology for synthesizing zinc oxide (ZnO) nanoparticles in sports rehabilitation, ensuring minimal harm to the environment.

Bishop theory and longitudinal vibration of nano-beams by two-phase local/nonlocal elasticity

  • Reza Nazemnezhad;Roozbeh Ashrafian;Alireza Mirafzal
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.75-89
    • /
    • 2023
  • In this paper, Bishop theory performs longitudinal vibration analysis of Nano-beams. Its governing equation, due to integrated displacement field and more considered primarily effects compared with other theories, enjoys fully completed status, and more reliable results as well. This article aims to find how Bishop theory and Two-phase elasticity work together. In other words, whether Bishop theory will be compatible with Two-phase local/nonlocal elasticity. Hamilton's principle is employed to derive governing equation of motion, and then the 6th order of Generalized Differential Quadrature Method (GDQM) as a constructive numerical method is utilized to attain the discretized two-phase formulation. To acquire a proper verification procedure, exact solution is prepared to be compared with current results. Furthermore, the effects of key parameters on the objective are investigated.

Discretization of laser model with bifurcation analysis and chaos control

  • Qamar Din;Waqas Ishaque;Iqra Maqsood;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.25-34
    • /
    • 2023
  • This paper investigates the dynamics and stability of steady states in a continuous and discrete-time single-mode laser system. By using an explicit criteria we explored the Neimark-Sacker bifurcation of the single mode continuous and discrete-time laser model at its positive equilibrium points. Moreover, we discussed the parametric conditions for the existence of period-doubling bifurcations at their positive steady states for the discrete time system. Both types of bifurcations are verified by the Lyapunov exponents, while the maximum Lyapunov ensures chaotic and complex behaviour. Furthermore, in a three-dimensional discrete-time laser model, we used a hybrid control method to control period-doubling and Neimark-Sacker bifurcation. To validate our theoretical discussion, we provide some numerical simulations.

Bending behavior of microfilaments in living cell with nonlocal effects

  • Muhammad Safeer;Muhammad Taj;Mohamed A. Khadimallah;Muzamal Hussain;Saima Akram;Faisal Mehmood Butt;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • Dynamics of protein filamentous has been an active area of research since the last few decades as the role of cytoskeletal components, microtubules, intermediate filaments and microfilaments is very important in cell functions. During cell functions, these components undergo the deformations like bending, buckling and vibrations. In the present paper, bending and buckling of microfilaments are studied by using Euler Bernoulli beam theory with nonlocal parametric effects in conjunction. The obtained results show that the nonlocal parametric effects are not ignorable and the applications of nonlocal parameters well agree with the experimental verifications.