• Title/Summary/Keyword: ANN techniques

Search Result 176, Processing Time 0.024 seconds

Analyzing the bearing capacity of shallow foundations on two-layered soil using two novel cosmology-based optimization techniques

  • Gor, Mesut
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.513-522
    • /
    • 2022
  • Due to the importance of accurate analysis of bearing capacity in civil engineering projects, this paper studies the efficiency of two novel metaheuristic-based models for this objective. To this end, black hole algorithm (BHA) and multi-verse optimizer (MVO) are synthesized with an artificial neural network (ANN) to build the proposed hybrid models. Based on the settlement of a two-layered soil (and a shallow footing) system, the stability values (SV) of 0 and 1 (indicating the stability and failure, respectively) are set as the targets. Each model predicted the SV for 901 stages. The results indicated that the BHA and MVO can increase the accuracy (i.e., the area under the receiving operating characteristic curve) of the ANN from 94.0% to 96.3 and 97.2% in analyzing the SV pattern. Moreover, the prediction accuracy rose from 93.1% to 94.4 and 95.0%. Also, a comparison between the ANN's error decreased by the BHA and MVO (7.92% vs. 18.08% in the training phase and 6.28% vs. 13.62% in the testing phase) showed that the MVO is a more efficient optimizer. Hence, the suggested MVO-ANN can be used as a reliable approach for the practical estimation of bearing capacity.

Assessment of Landslide Causal Factors Using ANN Method (ANN 기법을 이용한 사면 붕괴인자 평가)

  • Song, Young-Karb;Jung, Min-Su;Oh, Jeong-Rim;Cha, A-Reum
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.89-96
    • /
    • 2012
  • In this study landslide causal factors which are considered to have the same effect in assessment techniques are categorized and their impact on landslides is analyzed to acquire reasonable weighting factors in the landslide hazard. Results are compared to those of the Assessment Chart developed by National Institute for Disaster Prevention (NIDP) and the adequacy and proper portion for landslide causal factors are considered. The Artificial Neural Network (ANN) method applied to 28 landslide areas is incorporated to evaluate the reasonable rating. Results show that the following items in the Chart are necessary to modify their portions in order to implement the precise assessment results: 1) Estimated damage; 2) Tension crack; 3) Existence of valley.

Development of Machine Learning Based Precipitation Imputation Method (머신러닝 기반의 강우추정 방법 개발)

  • Heechan Han;Changju Kim;Donghyun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.167-175
    • /
    • 2023
  • Precipitation data is one of the essential input datasets used in various fields such as wetland management, hydrological simulation, and water resource management. In order to efficiently manage water resources using precipitation data, it is essential to secure as much data as possible by minimizing the missing rate of data. In addition, more efficient hydrological simulation is possible if precipitation data for ungauged areas are secured. However, missing precipitation data have been estimated mainly by statistical equations. The purpose of this study is to propose a new method to restore missing precipitation data using machine learning algorithms that can predict new data based on correlations between data. Moreover, compared to existing statistical methods, the applicability of machine learning techniques for restoring missing precipitation data is evaluated. Representative machine learning algorithms, Artificial Neural Network (ANN) and Random Forest (RF), were applied. For the performance of classifying the occurrence of precipitation, the RF algorithm has higher accuracy in classifying the occurrence of precipitation than the ANN algorithm. The F1-score and Accuracy values, which are evaluation indicators of the classification model, were calculated as 0.80 and 0.77, while the ANN was calculated as 0.76 and 0.71. In addition, the performance of estimating precipitation also showed higher accuracy in RF than in ANN algorithm. The RMSE of the RF and ANN algorithms was 2.8 mm/day and 2.9 mm/day, and the values were calculated as 0.68 and 0.73.

An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA

  • Khatir, S.;Khatir, T.;Boutchicha, D.;Le Thanh, C.;Tran-Ngoc, H.;Bui, T.Q.;Capozucca, R.;Abdel-Wahab, M.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • The existence of damages in structures causes changes in the physical properties by reducing the modal parameters. In this paper, we develop a two-stages approach based on normalized Modal Strain Energy Damage Indicator (nMSEDI) for quick applications to predict the location of damage. A two-dimensional IsoGeometric Analysis (2D-IGA), Machine Learning Algorithm (MLA) and optimization techniques are combined to create a new tool. In the first stage, we introduce a modified damage identification technique based on frequencies using nMSEDI to locate the potential of damaged elements. In the second stage, after eliminating the healthy elements, the damage index values from nMSEDI are considered as input in the damage quantification algorithm. The hybrid of Teaching-Learning-Based Optimization (TLBO) with Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) are used along with nMSEDI. The objective of TLBO is to estimate the parameters of PSO-ANN to find a good training based on actual damage and estimated damage. The IGA model is updated using experimental results based on stiffness and mass matrix using the difference between calculated and measured frequencies as objective function. The feasibility and efficiency of nMSEDI-PSO-ANN after finding the best parameters by TLBO are demonstrated through the comparison with nMSEDI-IGA for different scenarios. The result of the analyses indicates that the proposed approach can be used to determine correctly the severity of damage in beam structures.

Systolic Array Simulator Construction for the Back-propagation ANN (역전파 ANN의 시스톨릭 어레이를 위한 시뮬레이터 개발)

  • 박기현;전상윤
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.3
    • /
    • pp.117-124
    • /
    • 2000
  • A systolic array is a parallel processing system which consists of processing elements of basic computation capabilities, connected with regular and local communication lines. It has been known that a systolic array is on of effective systems to solve complicated communication problems occurred between densely connected neurons on ANN(Artificial Neural Network). In this paper, a systolic array simulator for the back-propagation ANN, which automatically constructs the proper systolic array for a given number of neurons of the ANN, is designed and constructed. With animation techniques of the simulators, it is easy for users to be able to examine the execution of the back-propagation algorithm on the designed systolic array step by step. Moreover the simulator can perform forward and backward operations of the back-propagation algorithm either in sequence or in parallel on the designed systolic array. Parallel execution can be performed by feeding continuous input patterns and by executing bidirectional propagations on all of processing elements of a systolic array at the same time.

  • PDF

A Study on Determinants of Stockpile Ammunition using Data Mining (데이터 마이닝을 활용한 장기저장탄약 상태 결정요인 분석 연구)

  • Roh, Yu Chan;Cho, Nam-Wook;Lee, Dongnyok
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.2
    • /
    • pp.297-307
    • /
    • 2020
  • Purpose: The purpose of this study is to analyze the factors that affect ammunition performance by applying data mining techniques to the Ammunition Stockpile Reliability Program (ASRP) data of the 155mm propelling charge. Methods: The ASRP data from 1999 to 2017 have been utilized. Logistic regression and decision tree analysis were used to investigate the factors that affect performance of ammunition. The performance evaluation of each model was conducted through comparison with an artificial neural networks(ANN) model. Results: The results of this study are as follows; logistic regression and the decision tree analysis showed that major defect rate of visual inspection is the most significant factor. Also, muzzle velocity by base charge and muzzle velocity by increment charge are also among the significant factors affecting the performance of 155mm propelling charge. To validate the logistic regression and decision tree models, their classification accuracies have been compared with the results of an ANN model. The results indicate that the logistic regression and decision tree models show sufficient performance which conforms the validity of the models. Conclusion: The main contribution of this paper is that, to our best knowledge, it is the first attempt at identifying the significant factors of ASPR data by using data mining techniques. The approaches suggested in the paper could also be extended to other types ammunition data.

Hybrid Learning Architectures for Advanced Data Mining:An Application to Binary Classification for Fraud Management (개선된 데이터마이닝을 위한 혼합 학습구조의 제시)

  • Kim, Steven H.;Shin, Sung-Woo
    • Journal of Information Technology Application
    • /
    • v.1
    • /
    • pp.173-211
    • /
    • 1999
  • The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.

  • PDF

Sound Based Machine Fault Diagnosis System Using Pattern Recognition Techniques

  • Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.134-143
    • /
    • 2017
  • Machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines. Generally, it is very difficult to diagnose a machine fault by conventional methods based on mathematical models because of the complexity of the real world systems and the obvious existence of nonlinear factors. This study develops an automatic machine fault diagnosis system that uses pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The sounds emitted by the operating machine, a drill in this case, are obtained and analyzed for the different operating conditions. The specific machine conditions considered in this research are the undamaged drill and the defected drill with wear. Principal component analysis is first used to reduce the dimensionality of the original sound data. The first principal components are then used as the inputs of a neural network based classifier to separate normal and defected drill sound data. The results show that the proposed PCA-ANN method can be used for the sounds based automated diagnosis system.

Computer Aided Identification of Inter-Layer Faults in Gas Insulated Capacitively Graded Bushing during Switching

  • Rao, M.Mohana;Dharani, P.;Rao, T. Prasad
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.28-34
    • /
    • 2009
  • In a Gas Insulated Substation (GIS), Very Fast Transients (VFTs) are generated mainly due to switching operations. These transients may cause internal faults, i.e., layer-to-layer faults in a capacitively graded bushing as it is one of the most important terminal equipment for GIS. The healthiness of the bushing is generally verified by measuring its leakage current. However, the change in current magnitude/pattern is only marginal for different types of fault conditions. Leakage current monitoring (LCM) systems generate large amounts of data and computer aided interpretation of defects may be of great assistance when analyzing this data. In view of the above, ANN techniques have been used in this study for identification of these minor faults. A single layer perceptron network, a two layer feed-forward back propagation network and cascade correlation (CC) network models are used to identify interlayer faults in the bushing. The effectiveness of the CC network over perceptron and back propagation networks in identification of a fault has been analysed as part of the paper.

Corporate Corruption Prediction Evidence From Emerging Markets

  • Kim, Yang Sok;Na, Kyunga;Kang, Young-Hee
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.4
    • /
    • pp.13-40
    • /
    • 2021
  • Purpose - The purpose of this study is to predict corporate corruption in emerging markets such as Brazil, Russia, India, and China (BRIC) using different machine learning techniques. Since corruption is a significant problem that can affect corporate performance, particularly in emerging markets, it is important to correctly identify whether a company engages in corrupt practices. Design/methodology/approach - In order to address the research question, we employ predictive analytic techniques (machine learning methods). Using the World Bank Enterprise Survey Data, this study evaluates various predictive models generated by seven supervised learning algorithms: k-Nearest Neighbour (k-NN), Naïve Bayes (NB), Decision Tree (DT), Decision Rules (DR), Logistic Regression (LR), Support Vector Machines (SVM), and Artificial Neural Network (ANN). Findings - We find that DT, DR, SVM and ANN create highly accurate models (over 90% of accuracy). Among various factors, firm age is the most significant, while several other determinants such as source of working capital, top manager experience, and the number of permanent full-time employees also contribute to company corruption. Research implications or Originality - This research successfully demonstrates how machine learning can be applied to predict corporate corruption and also identifies the major causes of corporate corruption.