• Title/Summary/Keyword: ANN techniques

Search Result 176, Processing Time 0.024 seconds

Modeling on Expansion Behavior of Gwangan Bridge using Machine Learning Techniques and Structural Monitoring Data (머신러닝 기법과 계측 모니터링 데이터를 이용한 광안대교 신축거동 모델링)

  • Park, Ji Hyun;Shin, Sung Woo;Kim, Soo Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.42-49
    • /
    • 2018
  • In this study, we have developed a prediction model for expansion and contraction behaviors of expansion joint in Gwangan Bridge using machine learning techniques and bridge monitoring data. In the development of the prediction model, two famous machine learning techniques, multiple regression analysis (MRA) and artificial neural network (ANN), were employed. Structural monitoring data obtained from bridge monitoring system of Gwangan Bridge were used to train and validate the developed models. From the results, it was found that the expansion and contraction behaviors predicted by the developed models are matched well with actual expansion and contraction behaviors of Gwangan Bridge. Therefore, it can be concluded that both MRA and ANN models can be used to predict the expansion and contraction behaviors of Gwangan Bridge without actual measurements of those behaviors.

Development of Neural Network System for Short-Term Load Forecasting for a Special Day (특수일 전력수요예측을 위한 신경회로망 시스템의 개발)

  • Kim, Kwang-Ho;Youn, Hyoung-Sun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.379-384
    • /
    • 1998
  • Conventional short-term load forecasting techniques have limitation in their use on holidays due to dissimilar load behaviors of holidays and insufficiency of pattern data. Thus, a new short-term load forecasting method for special days in anomalous load conditions is proposed in this paper. The proposed method uses two Artificial Neural Networks(ANN); one is for the estimation of load curve, and the other is for the estimation of minimum and maximum value of load. The forecasting procedure is as follows. First, the normalized load curve is estimated by ANN. At next step, minimum and maximum values of load in a special day are estimated by another ANN. Finally, the estimate of load in a whole special day is obtained by combining these two outputs of ANNs. The proposed method shows a good performance, and it may be effectively applied to the practical situations.

  • PDF

Residual Strength of Corroded Reinforced Concrete Beams Using an Adaptive Model Based on ANN

  • Imam, Ashhad;Anifowose, Fatai;Azad, Abul Kalam
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.159-172
    • /
    • 2015
  • Estimation of the residual strength of corroded reinforced concrete beams has been studied from experimental and theoretical perspectives. The former is arduous as it involves casting beams of various sizes, which are then subjected to various degrees of corrosion damage. The latter are static; hence cannot be generalized as new coefficients need to be re-generated for new cases. This calls for dynamic models that are adaptive to new cases and offer efficient generalization capability. Computational intelligence techniques have been applied in Construction Engineering modeling problems. However, these techniques have not been adequately applied to the problem addressed in this paper. This study extends the empirical model proposed by Azad et al. (Mag Concr Res 62(6):405-414, 2010), which considered all the adverse effects of corrosion on steel. We proposed four artificial neural networks (ANN) models to predict the residual flexural strength of corroded RC beams using the same data from Azad et al. (2010). We employed two modes of prediction: through the correction factor ($C_f$) and through the residual strength ($M_{res}$). For each mode, we studied the effect of fixed and random data stratification on the performance of the models. The results of the ANN models were found to be in good agreement with experimental values. When compared with the results of Azad et al. (2010), the ANN model with randomized data stratification gave a $C_f$-based prediction with up to 49 % improvement in correlation coefficient and 92 % error reduction. This confirms the reliability of ANN over the empirical models.

Modeling of a Dynamic Membrane Filtration Process Using ANN and SVM to Predict the Permeate Flux (ANN 및 SVM을 사용하여 투과 유량을 예측하는 동적 막 여과 공정 모델링)

  • Soufyane Ladeg;Mohamed Moussaoui;Maamar Laidi;Nadji Moulai-Mostefa
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.34-45
    • /
    • 2023
  • Two computational intelligence techniques namely artificial neural networks (ANN) and support vector machine (SVM) are employed to model the permeate flux based on seven input variables including time, transmembrane pressure, rotating velocity, the pore diameter of the membrane, dynamic viscosity, concentration and density of the feed fluid. The best-fit model was selected through the trial-error method and the two statistical parameters including the coefficient of determination (R2) and the average absolute relative deviation (AARD) between the experimental and predicted data. The obtained results reveal that the optimized ANN model can predict the permeate flux with R2 = 0.999 and AARD% = 2.245 versus the SVM model with R2 = 0.996 and AARD% = 4.09. Thus, the ANN model is found to predict the permeate flux with high accuracy in comparison to the SVM approach.

Combined effect of glass and carbon fiber in asphalt concrete mix using computing techniques

  • Upadhya, Ankita;Thakur, M.S.;Sharma, Nitisha;Almohammed, Fadi H.;Sihag, Parveen
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.253-279
    • /
    • 2022
  • This study investigated and predicted the Marshall stability of glass-fiber asphalt mix, carbon-fiber asphalt mix and glass-carbon-fiber asphalt (hybrid) mix by using machine learning techniques such as Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest(RF), The data was obtained from the experiments and the research articles. Assessment of results indicated that performance of the Artificial Neural Network (ANN) based model outperformed applied models in training and testing datasets with values of indices as; coefficient of correlation (CC) 0.8492 and 0.8234, mean absolute error (MAE) 2.0999 and 2.5408, root mean squared error (RMSE) 2.8541 and 3.3165, relative absolute error (RAE) 48.16% and 54.05%, relative squared error (RRSE) 53.14% and 57.39%, Willmott's index (WI) 0.7490 and 0.7011, Scattering index (SI) 0.4134 and 0.3702 and BIAS 0.3020 and 0.4300 for both training and testing stages respectively. The Taylor diagram also confirms that the ANN-based model outperforms the other models. Results of sensitivity analysis show that Carbon fiber has a major influence in predicting the Marshall stability. However, the carbon fiber (CF) followed by glass-carbon fiber (50GF:50CF) and the optimal combination CF + (50GF:50CF) are found to be most sensitive in predicting the Marshall stability of fibrous asphalt concrete.

Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques

  • Kim, Yunhee;Hong, Jiyeon;Shin, Jaewoo;Kim, Bumjoo
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.249-258
    • /
    • 2022
  • A disc cutter is an excavation tool on a tunnel boring machine (TBM) cutterhead; it crushes and cuts rock mass while the machine excavates using the cutterhead's rotational movement. Disc cutter wear occurs naturally. Thus, along with the management of downtime and excavation efficiency, abrasioned disc cutters need to be replaced at the proper time; otherwise, the construction period could be delayed and the cost could increase. The most common prediction models for TBM performance and for the disc cutter lifetime have been proposed by the Colorado School of Mines and Norwegian University of Science and Technology. However, design parameters of existing models do not well correspond to the field values when a TBM encounters complex and difficult ground conditions in the field. Thus, this study proposes a series of machine learning models to predict the disc cutter lifetime of a shield TBM using the excavation (machine) data during operation which is response to the rock mass. This study utilizes five different machine learning techniques: four types of classification models (i.e., K-Nearest Neighbors (KNN), Support Vector Machine, Decision Tree, and Staking Ensemble Model) and one artificial neural network (ANN) model. The KNN model was found to be the best model among the four classification models, affording the highest recall of 81%. The ANN model also predicted the wear rate of disc cutters reasonably well.

Detection of Incipient Faults in Induction Motors using FIS, ANN and ANFIS Techniques

  • Ballal, Makarand S.;Suryawanshi, Hiralal M.;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.181-191
    • /
    • 2008
  • The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

Development of Artificial Neural Network Model for Prediction of Seismic Response of Building with Soil-structure Interaction (지반-상부 구조물 효과를 고려한 인공신경망 기반 지진 응답 예측 모델 개발)

  • Won, Jongmuk;Shin, Jiuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.7-15
    • /
    • 2020
  • Constructing the maximum displacement and shear force database for the seismic performance of building with soil-structure interaction under varied earthquake scenarios and geotechnical conditions is critical in developing the neural network-based prediction models. However, using the available 3D FEM-based computer simulation techniques causes high computation costs in developing the database. This study introduces the framework of developing the artificial neural network (ANN) model to predict the seismic performance of building at given Poisson's ratio and shear wave velocity of soil. The simple Single-Degree-Of-Freedom system was used to develop the database and the performance of the developed neural network model is discussed through the evaluated coefficient of determination (R2). In addition, ANN models were developed for 90~100% percentile of the database to assess the accuracy of the developed ANN models in each percentile.

Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) for structural damage identification

  • Hakim, S.J.S.;Razak, H. Abdul
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.779-802
    • /
    • 2013
  • In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs) techniques are developed and applied to identify damage in a model steel girder bridge using dynamic parameters. The required data in the form of natural frequencies are obtained from experimental modal analysis. A comparative study is made using the ANNs and ANFIS techniques and results showed that both ANFIS and ANN present good predictions. However the proposed ANFIS architecture using hybrid learning algorithm was found to perform better than the multilayer feedforward ANN which learns using the backpropagation algorithm. This paper also highlights the concept of ANNs and ANFIS followed by the detail presentation of the experimental modal analysis for natural frequencies extraction.

Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method

  • Kim, Hyeong-Joo;Dinoy, Peter Rey T.;Choi, Hee-Seong;Lee, Kyoung-Bum;Mission, Jose Leo C.
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.523-535
    • /
    • 2019
  • Artificial Intelligence (AI) is anticipated to be the future of technology. Hence, AI has been applied in various fields over the years and its applications are expected to grow in number with the passage of time. There has been a growing need for accurate, direct, and quick prediction of geotechnical and foundation engineering models especially since the success of each project relies on numerous amounts of data. In this study, two applications of AI in the field of geotechnical and foundation engineering are presented - spatial interpolation of standard penetration test (SPT) data and prediction of consolidation of clay. SPT and soil profile data may be predicted and estimated at any location and depth at a site that has no available borehole test data using artificial intelligence techniques such as artificial neural networks (ANN) based on available geospatial information from nearby boreholes. ANN can also be used to accelerate the calculation of various theoretical methods such as the one-dimensional consolidation theory of clay with high efficiency by using lesser computation resources. The results of the study showed that ANN can be a valuable, powerful, and practical tool in providing various information that is needed in geotechnical and foundation design.