• Title/Summary/Keyword: ANN techniques

Search Result 178, Processing Time 0.027 seconds

A SMP Forecasting Method Based on Artificial Neural Network Using Time and Day Information (시간축 및 요일축 정보의 조합을 이용한 신경회로망 기반의 평일 계통한계가격 예측)

  • Lee, Jeong-Kyu;Kim, Min-Soo;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.438-440
    • /
    • 2003
  • This paper resents an application of an Artificial Neural Network(ANN) technique to forecast the short-term system marginal price(SMP). The forecasting of SMP is a very important factor in an electricity market for the optimal biddings of market participants as well as for the market stabilization of regulatory bodies. The proposed neural network scheme is composed of three layers. In this process, input data are set up to reflect market conditions. And the $\lambda$ that is the coefficient of activation function is modified in order to give a proper signal to each neuron and improve the adaptability for a neural network. The reposed techniques are trained validated and tested with the historical real-world data from korea Power Exchange(KPX).

  • PDF

Corporate credit rating prediction using support vector machines

  • Lee, Yong-Chan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.571-578
    • /
    • 2005
  • Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, the researcher uses a grid-search technique using 5-fold cross-validation to find out the optimal parameter values of kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, the researcher compares its performance with those of multiple discriminant analysis (MDA), case-based reasoning (CBR), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.

  • PDF

A Review of 3D-QSAR in Drug Design

  • Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Quantitative structure-activity relationship (QSAR) methodologies have been applied for many years, to correlate the relationship between physicochemical properties of chemical substances and their biological activities to generate a statistical model for prediction of the activities of new chemical entities. The basic principle behind the QSAR models is that, how structural variation is responsible for the difference in biological activities of the compounds. 3D-QSAR has emerged as a natural extension to the classical Hansch and Free-Wilson approaches, which develops the 3D properties of the ligands to predict their biological activities using various chemometric techniques (PLS, G/PLS, ANN etc). It has served as a valuable predictive tool in the design of pharmaceuticals and agrochemicals. This review seeks to provide different 3D-QSAR approaches involved in drug designing process to develop structure-activity relationships and also discussed the fundamental limitations, as well as those that might be overcome with the improved methodologies.

An Estimation Model of Fine Dust Concentration Using Meteorological Environment Data and Machine Learning (기상환경데이터와 머신러닝을 활용한 미세먼지농도 예측 모델)

  • Lim, Joon-Mook
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.173-186
    • /
    • 2019
  • Recently, as the amount of fine dust has risen rapidly, our interest is increasing day by day. It is virtually impossible to remove fine dust. However, it is best to predict the concentration of fine dust and minimize exposure to it. In this study, we developed a mathematical model that can predict the concentration of fine dust using various information related to the weather and air quality, which is provided in real time in 'Air Korea (http://www.airkorea.or.kr/)' and 'Weather Data Open Portal (https://data.kma.go.kr/).' In the mathematical model, various domestic seasonal variables and atmospheric state variables are extracted by multiple regression analysis. The parameters that have significant influence on the fine dust concentration are extracted, and using ANN (Artificial Neural Network) and SVM (Support Vector Machine), which are machine learning techniques, we proposed a prediction model. The proposed model can verify its effectiveness by using past dust and weather big data.

Classification for Imbalanced Breast Cancer Dataset Using Resampling Methods

  • Hana Babiker, Nassar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2023
  • Analyzing breast cancer patient files is becoming an exciting area of medical information analysis, especially with the increasing number of patient files. In this paper, breast cancer data is collected from Khartoum state hospital, and the dataset is classified into recurrence and no recurrence. The data is imbalanced, meaning that one of the two classes have more sample than the other. Many pre-processing techniques are applied to classify this imbalanced data, resampling, attribute selection, and handling missing values, and then different classifiers models are built. In the first experiment, five classifiers (ANN, REP TREE, SVM, and J48) are used, and in the second experiment, meta-learning algorithms (Bagging, Boosting, and Random subspace). Finally, the ensemble model is used. The best result was obtained from the ensemble model (Boosting with J48) with the highest accuracy 95.2797% among all the algorithms, followed by Bagging with J48(90.559%) and random subspace with J48(84.2657%). The breast cancer imbalanced dataset was classified into recurrence, and no recurrence with different classified algorithms and the best result was obtained from the ensemble model.

The Study of Chronic Kidney Disease Classification using KHANES data (국민건강영양조사 자료를 이용한 만성신장질환 분류기법 연구)

  • Lee, Hong-Ki;Myoung, Sungmin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.271-272
    • /
    • 2020
  • Data mining is known useful in medical area when no availability of evidence favoring a particular treatment option is found. Huge volume of structured/unstructured data is collected by the healthcare field in order to find unknown information or knowledge for effective diagnosis and clinical decision making. The data of 5,179 records considered for analysis has been collected from Korean National Health and Nutrition Examination Survey(KHANES) during 2-years. Data splitting, referred as the training and test sets, was applied to predict to fit the model. We analyzed to predict chronic kidney disease (CKD) using data mining method such as naive Bayes, logistic regression, CART and artificial neural network(ANN). This result present to select significant features and data mining techniques for the lifestyle factors related CKD.

  • PDF

Axial load prediction in double-skinned profiled steel composite walls using machine learning

  • G., Muthumari G;P. Vincent
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.739-754
    • /
    • 2024
  • This study presents an innovative AI-driven approach to assess the ultimate axial load in Double-Skinned Profiled Steel sheet Composite Walls (DPSCWs). Utilizing a dataset of 80 entries, seven input parameters were employed, and various AI techniques, including Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree Regression, Decision Tree with AdaBoost Regression, Random Forest Regression, Gradient Boost Regression Tree, Elastic Net Regression, Ridge Regression, and LASSO Regression, were evaluated. Decision Tree Regression and Random Forest Regression emerged as the most accurate models. The top three performing models were integrated into a hybrid approach, excelling in accurately estimating DPSCWs' ultimate axial load. This adaptable hybrid model outperforms traditional methods, reducing errors in complex scenarios. The validated Artificial Neural Network (ANN) model showcases less than 1% error, enhancing reliability. Correlation analysis highlights robust predictions, emphasizing the importance of steel sheet thickness. The study contributes insights for predicting DPSCW strength in civil engineering, suggesting optimization and database expansion. The research advances precise load capacity estimation, empowering engineers to enhance construction safety and explore further machine learning applications in structural engineering.

Optimizing Performance and Energy Efficiency in Cloud Data Centers Through SLA-Aware Consolidation of Virtualized Resources (클라우드 데이터 센터에서 가상화된 자원의 SLA-Aware 조정을 통한 성능 및 에너지 효율의 최적화)

  • Elijorde, Frank I.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2014
  • The cloud computing paradigm introduced pay-per-use models in which IT services can be created and scaled on-demand. However, service providers are still concerned about the constraints imposed by their physical infrastructures. In order to keep the required QoS and achieve the goal of upholding the SLA, virtualized resources must be efficiently consolidated to maximize system throughput while keeping energy consumption at a minimum. Using ANN, we propose a predictive SLA-aware approach for consolidating virtualized resources in a cloud environment. To maintain the QoS and to establish an optimal trade-off between performance and energy efficiency, the server's utilization threshold dynamically adapts to the physical machine's resource consumption. Furthermore, resource-intensive VMs are prevented from getting underprovisioned by assigning them to hosts that are both capable and reputable. To verify the performance of our proposed approach, we compare it with non-optimized conventional approaches as well as with other previously proposed techniques in a heterogeneous cloud environment setup.

Context-Aware Mobile User Authentication Approach using LSTM networks (LSTM 신경망을 활용한 맥락 기반 모바일 사용자 인증 기법)

  • Nam, Sangjin;Kim, Suntae;Shin, Jung-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • This study aims to complement the poor performance of existing context-aware authentication techniques in the mobile environment. The data used are GPS, Call Detail Record(CDR) and app usage. locational classification according to GPS density was implemented in order to distinguish other people in populated areas in the processing of GPS. It also handles missing values that may occur in data collection. The authentication model consists of two long-short term memory(LSTM) and one Artificial Neural Network(ANN) that aggregates the results, which produces authentication scores. In this paper, we compare the accuracy of this technique with that of other studies. Then compare the number of authentication attempts required to detect someone else's authentication. As a result, we achieved an average 11.6% improvement in accuracy and faster detection of approximately 60% of the experimental data.

Fault Diagnosis Method for Automatic Machine Using Artificial Neutral Network Based on DWT Power Spectral Density (인공신경망을 이용한 DWT 전력스펙트럼 밀도 기반 자동화 기계 고장 진단 기법)

  • Kang, Kyung-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.78-83
    • /
    • 2019
  • Sounds based machine fault diagnosis recovers all the studies that aim to detect automatically abnormal sound on machines using the acoustic emission by these machines. Conventional methods that use mathematical models have been found inaccurate because of the complexity of the industry machinery systems and the obvious existence of nonlinear factors such as noises. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose here an automatic fault diagnosis method of hand drills using discrete wavelet transform(DWT) and pattern recognition techniques such as artificial neural networks(ANN). We first conduct a filtering analysis based on DWT. The power spectral density(PSD) is performed on the wavelet subband except for the highest and lowest low frequency subband. The PSD of the wavelet coefficients are extracted as our features for classifier based on ANN the pattern recognition part. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.