터빈 사이클 보정 열 성능 분석은 발전소의 현재 성능을 결정하고 향상된 경제성 운전을 위해 요구된다. 본 연구에서는 신뢰성있는 성능 분석을 위해서 산업 표준인 ASME(American Society of Mechanical Engineers) PTC(Performance Test Code)를 기본으로 성능 분석에서 우선적으로 중요하게 적용되는 주급수 유량을 대상으로 영역별 판정 알고리즘을 개발하고 각 영역별로 현재의 터빈 사이클 성능을 추정하는 알고리즘을 개발하였다. 추정 알고리즘은 측정 상태량의 상관 관계를 기반으로 영역별로 형상 분류를 제시하고, 이를 기반으로 커널 회귀 모델을 이용하여 학습된 추정 모델을 구성하였으며, 커널 회귀 모델링의 우수성을 검증하기 위하여 신경 회로망 모델의 학습 결과와 비교하였다. 주급수 유량의 형상 특성에 따른 분류 및 추정 모델은 터빈 사이클에서 정확한 보정 열 성능 분석을 제공함으로써 성능 분석의 신뢰도를 증가시킬 수 있었으며 다른 성능 결정 변수에 대한 학습 및 검증 모델로 사용될 수 있다.
자가-적응 소프트웨어는 스스로 문제를 인지하여 인지한 문제에 대하여 소프트웨어 사이클이 멈추지 않고 해당 요구사항에 맞게 적응하는 소프트웨어이다. 본 논문에서는 임계점이 존재하는 시스템에서 발생하는 불필요한 적응 수행을 감소시키기 위하여 선행적 방식으로 임계점 이후의 상황을 예측함으로써 문제가 되는 이벤트를 사전에 처리하고자 한다. 실측치는 대부분 선형과 비선형이 모두 나타나기 때문에 하이브리드 모델을 사용하여 임계점 이후를 예측하며, 예측 기법의 사용 여부는 예측의 정확도를 기반으로 하는 적응 시점 판단 지표를 기준으로 한다. 본 논문의 기여점으로는 하이브리드 모델을 MAPE-K에 적용하여 임계점 이후 상황을 예측함으로써 실제 변화에 대한 불확실성을 감소시켰다는 점과 적응 시점 판단 지표를 기반으로 적응 시점을 판단함으로써 불필요한 적응 수행을 줄였다는 데에 있다.
기존의 식생정보는 대부분 5년 주기로 구축되어 최신성이 결여 되어있다. 식생의 조사는 사진측량과 사람의 현지조사로 이루어지며, 많은 시간과 비용을 소모하게 된다. 식생의 정보 중 식생층위구조에 대한 정보는 산림의 다양성과 환경을 평가하는 중요한 요소이다. 식생의 내부구조인 층위구조는 필수적 정보이지만, 일반적인 사진측량과 사람의 조사로는 한계점이 존재하게 된다. 본 연구에서는 KOMPSAT-3/3A/5 위성영상으로 부터 제작된 지수맵과 Texture맵, DSM(Digital Surface Model)과 DTM(Digital Terrain Model)의 차분으로 생성한 canopy정보를 Input layer로 층위자료를 인공신경망(Artificial Neural Network; ANN)을 이용하여 분류하였다. 단층과 다층의 산림의 층위 구조를 분류하여 최종분류결과 81.59% 확인하였다.
화장품 및 뷰티산업에서 고객 맞춤형 제품과 서비스를 제공하는 것은 주요 기술 트렌드이고, 피부상태 진단과 관리는 중요한 필수기능이다. 고객의 요구 수준은 더욱더 높아지고 있으며 이에 대한 다양하고 섬세한 고민과 요구 사항이 소셜미디어 커뮤니티에서 활발하게 다루어지고 있다. 소셜미디어 상의 이미지는 매우 다양하고 비정형적이므로 피부상태 진단 및 관리에 필요한 체계적인 피부 이미지 식별을 위한 시스템이 필요하다. 본 논문에서는 소셜미디어 인스타그램에서 수집한 빅데이터로부터 피부 이미지 데이터를 지능적으로 식별하고, 피부상태 진단 및 관리를 위한 정형화된 피부 샘플 데이터를 추출하는 시스템을 개발하였다. 본 논문에서 제안한 시스템은 빅데이터수집분석단계, 피부이미지분석단계, 훈련데이터준비단계, 인공신경망훈련단계, 피부이미지식별단계로 구성된다. 빅데이터수집분석단계에서는 인스타그램으로부터 빅데이터를 수집하고 피부 상태 진단 및 관리를 위한 이미지 정보를 분석결과로 저장한다. 피부이미지분석단계에서는 전통적인 이미지 처리 기법을 사용하여 피부 이미지의 평가 및 분석 결과를 획득한다. 훈련데이터준비단계에서는 피부이미지 분석결과로부터 피부 샘플데이터를 추출하여 훈련데이터를 준비하였다. 그리고 인공신경망훈련단계에서는 이 훈련데이터를 사용하여 지능적으로 피부 이미지 유형을 예측하는 인공신경망 AnnSampleSkin을 단계별 고도화와 훈련을 통해 모델을 완성하였다. 피부이미지식별단계에서는 소셜미디어로부터 수집된 이미지에 대해 피부샘플을 추출하고, 훈련된 인공신경망 AnnSampleSkin의 이미지 유형 예측 결과들을 통합하여 최종 피부 이미지 유형을 지능적으로 식별한다. 본 논문에서 제안된 피부이미지식별 방법은 약 92% 이상의 높은 피부 이미지 식별 정확도를 나타내고 있고, 정형화된 피부 샘플 이미지 빅데이터를 제공할 수 있게 되었다. 추출된 피부샘플 세트는 피부 상태를 진단하고 관리하는데 매우 효율적이고 유용한 정형화된 피부 이미지 데이터로 사용될 것으로 기대된다.
Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.
본 논문은 화자 독립의 음성인식을 위한 연구로서, DMS(Dynamic Multi-Section) 모델에 의한 DMSVQ(Dynamic Multi-Section Vector Quantization) 코드북과 퍼지 개념을 이용한 HMM(Hidden Markov Model) 음성인식 방법을 제안한다. 제안된 인식 방법에서는 학습 데이터를 동적으로 몇 개의 구간(section)으로 분할한 후, 각 구간마다 DMSVQ 코드북(codebook)으로 부터 거리값이 작은 순으로 퍼지 법칙을 적용함으로써 적당한 확률값을 준 다중 관측열(multi-observation sequences)을 구한다. 그런 다음, 이 다중 관측열을 이용하여 HMM을 작성하고, 인식시에는 관측 확률값이 가장 높은 것을 인식된 것으로 선택한다. 제안된 방법에 의한 인식 실험은 기존의 다양한 인식 실험들과 비교를 위해 동일한 조건하에서 같은 데이터로 수행 하였다. 실험 결과로서, 본 연구에서 제안한 방법이 기존의 방법들보다 우수한 방법임을 입증하였다.
The interaction and detergency between oily soil and surfactant solution were studied Samples used were tristearin, tripalmitin and their mixture as a triglyceride, myristic acid as a fatty acid and sodium dodecyl sulfate (SDS) as surfactant. The results were as follows: 1. The mixtures of model oily soils were formed of eutectic point and their melting point were lower than them of individual oily soils. 2. The formation of liquid crystalline (LC) phase was recognized in the triangle phase diagram for SDS~ water~model oily soil system. The areas of LC phase region were in the order of SHS~ water~myristir acid> SDS~ water~mixture of tristearin, tripalmitin and myristic acid (TS/TP/M)>SDS~water~mixture of tristearin and tripalmitin (TS/TP) 3. The LC phase region expanded to wide concentration range of SDS solution and high concentration range of model oily soil with increasing temperature. Particularity, the LC phase region expanded highly at $30~40^{\circ}C$ but when the temperature was elevated above $40^{\circ}C$, expanding tendency decreased. 4. In the system of myristic acid and TS/TP/M contacted with SDS solution, the LC phase was already formed at $28^{\circ}C$ and the region of the LC phase were expanded with increasing temperature. But in the system of TS/TP contacted with SDS solution, the LC phase was not formed in whole experiment temperature. 5. The detergency of myristic acid was very high ann it was recognized that the formation of the LC phase played an important role in the detergency. The detergency of TS/TP was very for low, but when TS/TF was mixed with myristic acid, the detergency of TS/TP increased. It is supposed that the LC phase was formed butween SDS solution and myristic acid promoted to penetration of SDS solution into the inner parts of TS/TP.
For the well observed 16 globular clusters with known metal abundance (Z), the helium abundances (Y) and ages are determined by various methods, and the relations between Y, Z and age are examined. The luminosity $L_{RR}$ of RR Lyrae stars is known to be dependent of evolutionary models and pulsation theory in the sense that the pulsation theory and horizontal branch (HB) models yield the anticorrelation between $L_{RR}$ and Z whereas main sequence (MS) and red giant branch (RGB) models yield the direct correlation between them. Similarly the anticorrelation between Y and Z is obtained from the HB models and pulsation theory whereas the direct correlation between them is obtained when the RGB model is applied. The current evolutionary models yield the anticorrelation between Z and age of clusters whenever the direct correlation between Y and Z holds. However when the anticorrelation between Y and Z is applied for age determination, the similar age of clusters is obtained as shown by Sandage (1982b). The ages, which are determined by the fitting of C-M diagrams to isochrones in the ($M_v$, B-V)-plane, suggest the two different chemical enrichment processes, which could be accounted for by the disk-halo model for the chemical evolution of the Galaxy (Lee and Ann 1981). Also it is known that the R-method is very useful for Y-determination and the derived Y's show the increasing rate of $\frac{{\Delta}Y}{{\Delta}Z}{\simeq}0.5$ which is comparable to the observed value of $\frac{{\Delta}Y}{{\Delta}Z}{\simeq}0.3$ from HII regions and planetary nebulae by Peimbert and Torres-Peimbert (1976). In this case, the age-metallicity relation of globular clusters could be explained by the disk-halo model.
The Voice recognition is one of convenient methods to communicate between human and robots. This study proposes a speech recognition method using speech recognizers based on Hidden Markov Model (HMM) with a combination of techniques to enhance a biped robot control. In the past, Artificial Neural Networks (ANN) and Dynamic Time Wrapping (DTW) were used, however, currently they are less commonly applied to speech recognition systems. This Research confirms that the HMM, an accepted high-performance technique, can be successfully employed to model speech signals. High recognition accuracy can be obtained by using HMMs. Apart from speech modeling techniques, multiple feature extraction methods have been studied to find speech stresses caused by emotions and the environment to improve speech recognition rates. The procedure consisted of 2 parts: one is recognizing robot commands using multiple HMM recognizers, and the other is sending recognized commands to control a robot. In this paper, a practical voice recognition system which can recognize a lot of task commands is proposed. The proposed system consists of a general purpose microprocessor and a useful voice recognition processor which can recognize a limited number of voice patterns. By simulation and experiment, it was illustrated the reliability of voice recognition rates for application of the manufacturing process.
New product development (NPD) is defined as the transformation of a market opportunity and a set of assumptions about product technology into a product available for sale. Managers charged with project selection decisions in the NPD process, such as go/no-go choices and specific resource allocation decisions, are faced with a complicated problem. Therefore, the ability to develop new successful products has identifies as a major determinant in sustaining a firm's competitive advantage. The purpose of this study is to develop a new evaluation model for NPD project selection in the high -tech industry using support vector machines (SYM). The evaluation model is developed through two phases. In the first phase, binary (go/no-go) classification prediction model, i.e. SVM for high-tech NPD project selection is developed. In the second phase. using the predicted output value of SVM, feasibility grade is calculated for the final NPD project decision making. In this study, the feasibility grades are also divided as three level grades. We assume that the frequency of NPD project cases is symmetrically determined according to the feasibility grades and misclassification errors are partially minimized by the multiple grades. However, the horizon of grade level can be changed by firms' NPD strategy. Our proposed feasibility grade method is more reasonable in NPD decision problems by considering particularly risk factor of NPD in viewpoints of future NPD success probability. In our empirical study using Korean NPD cases, the SVM significantly outperformed ANN and logistic regression as benchmark models in hit ratio. And the feasibility grades generated from the predicted output value of SVM showed that they can offer a useful guideline for NPD project selection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.