• 제목/요약/키워드: ANN 모델

검색결과 263건 처리시간 0.026초

인공신경망을 기반으로 한 C.G.S 공법의 개량효과 예측시스템 개발 (Development of Improvement Effect Prediction System of C.G.S Method based on Artificial Neural Network)

  • 김정훈;홍종욱;변요셉;정의엽;서석현;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제14권9호
    • /
    • pp.31-37
    • /
    • 2013
  • 본 연구는 C.G.S공법 적용 지반을 설치 직경, 설치 간격, 면적 치환율, 지반강성에 따른 모델링을 실시함으로써 주변 지반의 거동을 파악하고자 하였고, 인공신경망의 매개변수 연구를 통해 본 연구에 가장 적합한 인공신경망 모델을 선정하여 수치해석과 인공신경망 연계를 통한 인공신경망 예측 모델을 개발하였다. 그 결과, C.G.S 말뚝 침하량 및 지반 침하량은 직경, 설치 간격, 면적 치환율, 지반강성 별로 일치하여 하나의 곡선으로 나타났으며, 이는 C.G.S 공법 적용 지반의 거동양상이 일정한 형태로 나타남을 의미하는 것으로, 이러한 결과를 바탕으로 3차원 거동에 대한 인공신경망 학습이 가능한 것으로 파악되었다. 인공신경망의 내적인자 연구 결과, 은닉층 뉴런수 10개, 모멘텀 상수 0.2, 학습률의 경우 0.2를 사용할 경우 입력과 출력간의 관계가 적절히 표현되는 것으로 나타났다. 이러한 인공신경망 모델의 최적구조를 이용하여 C.G.S 공법의 지반 거동을 평가한 결과는 결정계수 값이 C.G.S 말뚝 침하의 경우는 0.8737, 지반 침하의 경우는 0.7339, 지반 융기의 경우는 0.7212로 나타나 충분한 신뢰도를 보이고 있음을 알수 있었다.

남양호와 백제보의 Chlorophyll-a 산정을 위한 초분광 영상기반 수체분광특성 비교 분석 (Comparative analysis of water surface spectral characteristics based on hyperspectral images for chlorophyll-a estimation in Namyang estuarine reservoir and Baekje weir)

  • 장원진;김진욱;김진휘;남귀숙;강의태;박용은;김성준
    • 한국수자원학회논문집
    • /
    • 제56권2호
    • /
    • pp.91-101
    • /
    • 2023
  • 본 연구에서는 담수를 대상으로 녹조의 발생을 모니터링하기 위해 내륙에 위치한 백제보와 남양호의 초분광영상을 이용하여 클로로필-a (Chl-a)의 농도를 추정하였다. 각 유역의 초분광이미지는 2016년부터 2017년까지 백재보에서 항공기로, 2020년부터 2021년까지 남양호에서 드론으로 촬영하였다. 이후, 순열 특성 중요도를 이용하여 Chl-a 농도와 관련성이 높은 30개의 반사 대역을 선택하였으며, 백제보는 400-530, 620-680, 710-730, 760-790 nm, 남양호는 400-430, 655-680, 740-800 nm 구간의 반사도가 선택되었다. 선택된 반사율을 입력자료로 하는 인공 신경망 기반의 Chl-a 산정 모델을 개발하였으며 모형의 성능은 결정계수(R2), 평균제곱근오차(RMSE), 평균절대오차(MAE)로 평가하였다. 유역별 산정모델의 성능은 각각 R2: 0.63, 0.82, RMSE: 9.67, 6.99, MAE: 11.25, 8.48로 나타났다. 본 연구에서 개발된 Chl-a 모델은 향후 담수호 녹조의 최적 관리를 위한 기초 도구로 활용될 수 있을 것으로 기대된다.

구문 분석과 One-Stage DP를 이용한 연속 숫자음 인식에 관한 연구 (A study on the Recognition of Continuous Digits using Syntactic Analysis and One-Stage DP)

  • 안태옥
    • 한국음향학회지
    • /
    • 제14권3호
    • /
    • pp.97-104
    • /
    • 1995
  • 본 논문은 음성 다이얼링 시스템 구현을 위한 연속 숫자음 인식에 관한 연구로써, 구문 분석을 이용한 One-Stage DP에 의한 음성 인식 방법을 제안하다. 인식 실험을 위해 우선 구간 구분화 알고리즘을 이용하여 DMS (Dynamic Multi-SEction) 모델을 만들며, 제안된 구문 분석을 이용한 One-Stage DP 방법으로 실험 대ㅛ상의 연속 숫자음 데이터를 인식하게 하였다. 본 연구에서는 8명의 ㅣ남성 화자에 의해 2-3번 발음도니 21종의 7자리의 연속 숫자음이 사용되었고, 기존의 One-Stage DP와 제안된 구문 분석을 이용한 One-Stage DP 음성 인식 알고리즘을 사용해서 화자 종속과 화자 독립 실험을 실험실 환경에서 수행하였다. 인식 실험 결과, 기존의 방법보다 제안된 방법이 인식률이 좋은 것으로 나타났으며, 제안된 방법에서는 화자 종속과 화자 독립 실험에서 각각 약 91.7%, 89.7%로 나타났다.

  • PDF

머신러닝 기법을 활용한 아이돌 생존 가능성 예측 연구 : 산업 경쟁력 증진을 중심으로 (A Study on the Idol Survivability Prediction Using Machine Learning Techniques : Focused on the Industrial Competitiveness)

  • 김슬아;안주혁;최복권
    • 한국콘텐츠학회논문지
    • /
    • 제20권5호
    • /
    • pp.291-302
    • /
    • 2020
  • 아이돌이 주도하는 한국의 대중음악은 이제 전세계적인 팬덤을 확보하였다. 이로 인해, 아티스트를 넘어서 한국의 경제 상황에도 커다란 영향력을 행사하고 있다. 즉, 아이돌 그룹 하나가 크게 히트를 치면 조 단위의 외화를 벌어들일 수 있게 된 것이다. 따라서 아이돌 그룹을 성공시키고 이를 유지시키는 것이 상당히 중요한 과제로 떠올랐다. 본 연구에서는 소속사가 손익분기점으로 삼는 데뷔 후 3년차 및 평균적인 재계약 직후 시점인 8년차 아이돌의 생존여부를 인공신경망, 의사결정나무, 랜덤 포레스트를 활용하여 예측해보고자 한다. 그리고 생존에 있어 무엇이 중요한 요인인지를 나무 모델의 특성중요도 및 로지스틱 회귀분석을 활용하여 설명하였다. 그 결과, 데뷔 시점의 경쟁자 수, 최초 그룹의 구성원 수, 다루는 장르의 수 등의 요인이 유의하다는 결론을 얻을 수 있었다. 이를 통해, 최종적으로 아이돌 그룹을 보다 효율적으로 기획, 관리함으로써 산업 경쟁력을 증진할 수 있을 것으로 기대한다.

고성능 콘크리트의 활용을 위한 신경망의 적용 (Applications of Artificial Neural Networks for Using High Performance Concrete)

  • 양승일;윤영수;이승훈;김규동
    • 한국방재학회 논문집
    • /
    • 제3권4호
    • /
    • pp.119-129
    • /
    • 2003
  • 콘크리트와 철은 건설에서 필수적인 구조 재료이다. 그러나, 철과 달리 콘크리트는 하나의 재료가 아니라 많은 물질들로 구성된 복합재료이며, 구성 재료, 현장 환경, 그리고 기술자의 숙련도 등에 의해 많은 영향을 받는다. 그리고 유동성과 공기량 등 즉시 알 수 있는 물성도 있지만 강도나 내구성 같이 시간이 지나야 알 수 있는 특성도 존재하므로 콘크리트의 배합은 전문가의 경험에 많이 의존해 왔다. 하지만, 콘크리트도 고성능화 되는 시점에서 첨가 재료도 늘어나고 기존의 자료도 부족하기 때문에 새로운 기법이 필요한 때이다. 신경망은 복잡한 비선형 문제를 처리하는 인간의 두뇌를 모방한 모델로 패턴 인식 및 분류, 예측 등의 분야에서 많이 사용되고 있다 여기서는 그 중에서 역전파 알고리즘과 광선형 기저 함수망 모형이 사용되었다. 여덟가지 재료(물, 시멘트, 잔골재, 굵은 골재, 플라이 애쉬, 실리카 흄, 유동화제, 그리고 공기연행제)가 배합에 사용되었으며, 압축강도와 슬럼프, 공기량을 물성으로 사용하였다. 결과적으로 신경망은 고성능 콘크리트치 배합 및 물성 예측 등 활용에 유용하게 사용될 수 있음을 알 수 있었다.

인공신경망을 이용한 금강 유역 하천 수위예측 적용성 평가 (Application Assessment of water level prediction using Artificial Neural Network in Geum river basin)

  • 유완식;김선민;김연수;황의호;정관수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.424-424
    • /
    • 2018
  • 인공신경망(Artificial Neural Network; ANN)은 뇌에 존재하는 생물학적 신경세포와 이들의 신호처리 과정을 수학적으로 묘사하여 뇌가 나타내는 지능적 형태의 반응을 구현한 것이다. 인공신경망은 학습(training)을 통해 입력과 출력으로 구성되는 하나의 시스템을 병렬적이고 비선형적으로 구축할 수 있으며, 유연한 모델링 특성으로 인하여 시스템 예측, 패턴인식, 분류 및 공정제어 등의 다양한 분야에서 활용되고 있다. 인공신경망에 대한 최초의 이론은 Muculloch and Pitts(1943)가 제안한 Perceptron에서 시작 되었으며, 기본적인 학습기법인 오차역전파 기법(back-propagation Algorithm) 이 1980년대에 들어 수학적으로 정립된 이후 여러 분야에서 활용되기 시작하였다). 본 연구에서는 하도추적, 구체적으로는 상류단의 복수의 수위관측을 이용하여 하류단의 수위를 예측하기 위하여 인공신경망 모델을 구성하였다. 대상하도는 금강유역의 용담댐과 대청댐 사이의 본류이며, 상류단 입력자료로써 본류에 있는 수통, 호탄 관측소 관측수위와 지류인 송천 관측소 관측수위를 고려하였다. 출력 값으로는 하류단의 옥천 관측소 수위를 3시간 및 6시간의 선행시간으로 예측하도록 인공신경망 모형을 구성하였다. 인공신경망의 학습(testing), 시험(testing), 검증(validation)을 위해 2000년부터 2012년까지 13년간의 시수위자료를 이용하여 학습을 진행하였으며, 2013년부터 2014년의 2년간의 수위자료를 이용한 시험을 통해 최적의 모형을 선정하였다. 또한 선정된 최적의 모형을 이용하여 2015년부터 2016년까지의 수위예측을 수행하였다.

  • PDF

몰드변압기의 보이드 결함 크기 판별 (Identification of Void Diameters for Cast-Resin Transformers)

  • 정기우;김성욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.570-573
    • /
    • 2022
  • 본 논문에서는 신경망 모델을 적용한 몰드변압기의 보이드 결함 크기 판별에 관한 연구를 수행하였다. PCB 기반의 로고우스키 코일형 부분방전 센서를 제작하여 부분방전 신호를 측정하였고, 보이드에 의한 부분방전 결함을 모의하기 위한 PD 전극계를 제작하였다. 또한 보이드는 원통형 모양의 알루미늄 틀을 제작하여 에폭시가 경화되는 과정에서 실린지를 삽입하고 공기를 주입하여 서로다른 직경을 가지는 4개의 시편을 제작하였다. 보이드 결함 크기 판별을 위해 부분방전 전하량, 방전 펄스 수, 위상 분포의 부분방전 특성 파라미터를 추출하여 Labview 기반의 VI (Virtual Instrument)로 역전파 알고리즘을 설계하였다. 실험 결과로부터 제작된 알고리즘은 90%이상의 판별률로 결함의 직경크기를 구분할 수 있었다. 본 연구의 결과는 현장에서 PD 측정 시 몰드변압기의 유지보수 및 절연물 교체의 근거 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

원전 구조물의 경년열화를 고려한 지진응답예측 기계학습 모델의 성능평가 (Performance Evaluation of Machine Learning Model for Seismic Response Prediction of Nuclear Power Plant Structures considering Aging deterioration)

  • 김현수;김유경;이소연;장준수
    • 한국공간구조학회논문집
    • /
    • 제24권3호
    • /
    • pp.43-51
    • /
    • 2024
  • Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson's ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.

비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측 모델 (A Recidivism Prediction Model Based on XGBoost Considering Asymmetric Error Costs)

  • 원하람;심재승;안현철
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.127-137
    • /
    • 2019
  • 재범예측은 70년대 이전부터 전문가들에 의해서 꾸준히 연구되어온 분야지만, 최근 재범에 의한 범죄가 꾸준히 증가하면서 재범예측의 중요성이 커지고 있다. 특히 미국과 캐나다에서 재판이나 가석방심사 시 재범 위험 평가 보고서를 결정적인 기준으로 채택하게 된 90년대를 기점으로 재범예측에 관한 연구가 활발해졌으며, 비슷한 시기에 국내에서도 재범요인에 관한 실증적인 연구가 시작되었다. 지금까지 대부분의 재범예측 연구는 재범요인 분석이나 재범예측의 정확성을 높이는 연구에 집중된 경향을 보이고 있다. 그러나 재범 예측에는 비대칭 오류 비용 구조가 있기 때문에 경우에 따라 예측 정확도를 최대화함과 동시에 예측 오분류 비용을 최소화하는 연구도 중요한 의미를 가진다. 일반적으로 재범을 저지르지 않을 사람을 재범을 저지를 것으로 오분류하는 비용은 재범을 저지를 사람을 재범을 저지르지 않을 것으로 오분류하는 비용보다 낮다. 전자는 추가적인 감시 비용만 증가되는 반면, 후자는 범죄 발생에 따른 막대한 사회적, 경제적 비용을 야기하기 때문이다. 이러한 비대칭비용에 따른 비용 경제성을 반영하여, 본 연구에서 비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측모델을 제안한다. 모델의 첫 단계에서 최근 데이터 마이닝 분야에서 높은 성능으로 각광받고 있는 앙상블 기법, XGBoost를 적용하였고, XGBoost의 결과를 로지스틱 회귀 분석(Logistic Regression Analysis), 의사결정나무(Decision Trees), 인공신경망(Artificial Neural Networks), 서포트 벡터 머신(Support Vector Machine)과 같은 다양한 예측 기법과 비교하였다. 다음 단계에서 임계치의 최적화를 통해 FNE(False Negative Error)와 FPE(False Positive Error)의 가중 평균인 전체 오분류 비용을 최소화한다. 이후 모델의 유용성을 검증하기 위해 모델을 실제 재범예측 데이터셋에 적용하여 XGBoost 모델이 다른 비교 모델 보다 우수한 예측 정확도를 보일 뿐 아니라 오분류 비용도 가장 효과적으로 낮춘다는 점을 확인하였다.

아크릴계 이온교환섬유를 이용한 수중 크롬(VI) 제거 (Chromium(VI) Removal from Aqueous Solution using Acrylic Ion Exchange Fiber)

  • 남아름;박정안;도태구;최재우;최웅수;김경남;윤성택;이상협
    • 대한환경공학회지
    • /
    • 제39권3호
    • /
    • pp.112-117
    • /
    • 2017
  • PAN 기반 아크릴계 섬유와 DETA 및 $AlCl_3{\cdot}6H_2O$를 반응시켜 아민기($-NH_2$)를 가진 이온교환섬유 PADD를 합성하였다. 개발된 섬유상 소재는 FT-IR과 SEM을 이용하여 그 특성을 확인해 보았다. 회분식 실험으로 수행된 PADD를 이용한 크롬제거 실험 결과는 Langmuir 등온흡착모델에 잘 적용되었으며, 이때 계산된 이론적 최대흡착능 ($Q_{max}$)은 6.93 mmol/g으로 나타났다. 한편 동적흡착실험은 Lagergren 유사이차속도모델에 잘 부합되었다. PADD의 크롬 흡착능은 pH 2에서 가장 높은 값인 4.11 mmol/g을 나타내었고 pH 변화에 많은 영향을 받는 것으로 확인되었다. 또한, 인산과 비소(V)에 대한 공존이온 실험을 통해 PADD가 크롬에 대한 높은 선택성을 갖고 있음을 확인할 수 있었다. 산-염기 역적정으로 구한 PADD의 총이온교환능 (4.70 mmol/g)을 통해 소재의 선택적 제거 가능성을 검증하였다.