• Title/Summary/Keyword: ANN기법

Search Result 230, Processing Time 0.02 seconds

Application of Artificial Neural Network Reliable to Estimation Rigidity Index of Korean Soft Clay (국내 연약지반의 신뢰성 있는 강성지수 추정을 위한 인공신경망 이론의 적용)

  • Kim, Young Uk;Kim, Young Sang;Goo, Nam Sil;Park, Ji Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.421-429
    • /
    • 2006
  • This study was undertaken to develop an analysis model representing a reliable estimation of rigidity of Korean soft clay using an artificial neural network (ANN). Data for the model development were obtained through a laboratory study, and were used for training and verification. The coefficient of correlation between the measured and predicted data using the developed model was relatively high. It demonstrates the potential application of ANN for the reliable estimation of Korean soft clay rigidity while past attempts at building such a mathematical model have proved difficult.

A Comparative Study on Feature Selection and Classification Methods Using Closed Frequent Patterns Mining (닫힌 빈발 패턴을 기반으로 한 특징 선택과 분류방법 비교)

  • Zhang, Lei;Jin, Cheng Hao;Ryu, Keun Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.148-151
    • /
    • 2010
  • 분류 기법은 데이터 마이닝 기술 중 가장 잘 알려진 방법으로서, Decision tree, SVM(Support Vector Machine), ANN(Artificial Neural Network) 등 기법을 포함한다. 분류 기법은 이미 알려진 상호 배반적인 몇 개 그룹에 속하는 다변량 관측치로부터 각각의 그룹이 어떤 특징을 가지고 있는지 분류 모델을 만들고, 소속 그룹이 알려지지 않은 새로운 관측치가 어떤 그룹에 분류될 것인가를 결정하는 분석 방법이다. 분류기법을 수행할 때에 기본적으로 특징 공간이 잘 표현되어 있다고 가정한다. 그러나 실제 응용에서는 단일 특징으로 구성된 특징공간이 분명하지 않기 때문에 분류를 잘 수행하지 못하는 문제점이 있다. 본 논문에서는 이 문제에 대한 해결방안으로써 많은 정보를 포함하면서 빈발패턴에 대한 정보의 순실이 없는 닫힌 빈발패턴 기반 분류에 대한 연구를 진행하였다. 본 실험에서는 ${\chi}^2$(Chi-square)과 정보이득(Information Gain) 속성 선택 척도를 사용하여 의미있는 특징 선택을 수행하였다. 그 결과, 이 연구에서 제시한 척도를 사용하여 특징 선택을 수행한 경우, C4.5, SVM 과 같은 분류기법보다 더 향상된 분류 성능을 보였다.

Optimizing Performance and Energy Efficiency in Cloud Data Centers Through SLA-Aware Consolidation of Virtualized Resources (클라우드 데이터 센터에서 가상화된 자원의 SLA-Aware 조정을 통한 성능 및 에너지 효율의 최적화)

  • Elijorde, Frank I.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2014
  • The cloud computing paradigm introduced pay-per-use models in which IT services can be created and scaled on-demand. However, service providers are still concerned about the constraints imposed by their physical infrastructures. In order to keep the required QoS and achieve the goal of upholding the SLA, virtualized resources must be efficiently consolidated to maximize system throughput while keeping energy consumption at a minimum. Using ANN, we propose a predictive SLA-aware approach for consolidating virtualized resources in a cloud environment. To maintain the QoS and to establish an optimal trade-off between performance and energy efficiency, the server's utilization threshold dynamically adapts to the physical machine's resource consumption. Furthermore, resource-intensive VMs are prevented from getting underprovisioned by assigning them to hosts that are both capable and reputable. To verify the performance of our proposed approach, we compare it with non-optimized conventional approaches as well as with other previously proposed techniques in a heterogeneous cloud environment setup.

Context-Aware Mobile User Authentication Approach using LSTM networks (LSTM 신경망을 활용한 맥락 기반 모바일 사용자 인증 기법)

  • Nam, Sangjin;Kim, Suntae;Shin, Jung-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • This study aims to complement the poor performance of existing context-aware authentication techniques in the mobile environment. The data used are GPS, Call Detail Record(CDR) and app usage. locational classification according to GPS density was implemented in order to distinguish other people in populated areas in the processing of GPS. It also handles missing values that may occur in data collection. The authentication model consists of two long-short term memory(LSTM) and one Artificial Neural Network(ANN) that aggregates the results, which produces authentication scores. In this paper, we compare the accuracy of this technique with that of other studies. Then compare the number of authentication attempts required to detect someone else's authentication. As a result, we achieved an average 11.6% improvement in accuracy and faster detection of approximately 60% of the experimental data.

A Basic Study on the Prediction of Collapse of Tunnels Using Artificial Neural Network (인공신경망 기법을 이용한 터널 붕괴 예측에 관한 기초 연구)

  • Kim, Hong-Heum;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.5-17
    • /
    • 2016
  • Collapse of a tunnel can occur anytime, anywhere due to the special characteristics of tunnel structures and unexpected geological conditions during construction. Tunnel collapse will lead to economic losses and casualties. So various studies are continually being conducted to prevent economic losses, casualties and accidents. In this study, we analyzed data from 56 domestic construction tunnel collapse sites, and input factors to be applied to the artificial neural network were selected by the sensitivity analysis. And for the artificial neural network model design studies were carried out with the selected input factors and optimized ANN model to predict the type of tunnel collapse was determined. By using it, in 12 sites where tunnel collapse occurred applicability evaluation was conducted. Thus, the tunnel collapse type predictability was verified. These results will be able to be used as basic data for preventing and reinforcing collapse in the tunnel construction site.

Three Stage Neural Networks for Direction of Arrival Estimation (도래각 추정을 위한 3단계 인공신경망 알고리듬)

  • Park, Sun-bae;Yoo, Do-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2020
  • Direction of arrival (DoA) estimation is a scheme of estimating the directions of targets by analyzing signals generated or reflected from the targets and is used in various fields. Artificial neural networks (ANN) is a field of machine learning that mimics the neural network of living organisms. They show good performance in pattern recognition. Although researches has been using ANNs to estimate the DoAs, there are limitationsin dealing with variations of the signal-to-noise ratio (SNR) of the target signals. In this paper, we propose a three-stage ANN algorithm for DoA estimation. The proposed algorithm can minimize the performance reduction by applying the model trained in a single SNR environment to various environments through a 'noise reduction process'. Furthermore, the scheme reduces the difficulty in learning and maintains efficiency in estimation, by employing a process of DoA shift. We compare the performance of the proposed algorithm with Cramer-Rao bound (CRB) and the performances of existing subspace-based algorithms and show that the proposed scheme exhibits better performance than other schemes in some severe environments such as low SNR environments or situations in which targets are located very close to each other.

Development of Seismic Fragility Curves for Slopes Using ANN-based Response Surface (인공신경망 기반의 응답면 기법을 이용한 사면의 지진에 대한 취약도 곡선 작성)

  • Park, Noh-Seok;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.31-42
    • /
    • 2016
  • Usually the seismic stability analysis of slope uses the pseudostatic analysis considering the inertial force by the earthquake as a static load. Geostructures such as slope include the uncertainty of soil properties. Therefore, it is necessary to consider probabilistic method for stability analysis. In this study, the probabilistic stability analysis of slope considering the uncertainty of soil properties has been performed. The fragility curve that represents the probability of exceeding limit state of slope as a function of the ground motion has been established. The Monte Carlo Simulation (MCS) has been implemented to perform the probabilistic stability analysis of slope with pseudostatic analysis. A procedure to develop the fragility curve by the pseudostatic horizontal acceleration has been presented by calculating the probability of failure based on the Artificial Neural Network (ANN) based response surface technique that reduces the required time of MCS. The results showed that the proposed method can get the fragility curve that is similar to the direct MCS-based fragility curve, and can be efficiently used to reduce the analysis time.

Real-Time Detection on FLUSH+RELOAD Attack Using Performance Counter Monitor (Performance Counter Monitor를 이용한 FLUSH+RELOAD 공격 실시간 탐지 기법)

  • Cho, Jonghyeon;Kim, Taehyun;Shin, Youngjoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.6
    • /
    • pp.151-158
    • /
    • 2019
  • FLUSH+RELOAD attack exposes the most serious security threat among cache side channel attacks due to its high resolution and low noise. This attack is exploited by a variety of malicious programs that attempt to leak sensitive information. In order to prevent such information leakage, it is necessary to detect FLUSH+RELOAD attack in real time. In this paper, we propose a novel run-time detection technique for FLUSH+RELOAD attack by utilizing PCM (Performance Counter Monitor) of processors. For this, we conducted four kinds of experiments to observe the variation of each counter value of PCM during the execution of the attack. As a result, we found that it is possible to detect the attack by exploiting three kinds of important factors. Then, we constructed a detection algorithm based on the experimental results. Our algorithm utilizes machine learning techniques including a logistic regression and ANN(Artificial Neural Network) to learn from different execution environments. Evaluation shows that the algorithm successfully detects all kinds of attacks with relatively low false rate.

Reliability Analysis of Slopes Using ANN-based Limit-state Function (인공신경망 기반의 한계상태함수를 이용한 사면의 신뢰성해석)

  • Cho, Sung-Eun;Byeon, Wi-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.117-127
    • /
    • 2007
  • Slope stability analysis is a geotechnical engineering problem characterized by many sources of uncertainty. Some of them are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for integrating commercial finite difference method into probabilistic analysis of slope stability is presented. Since the limit-state function cannot be expressed in an explicit form, the ANN-based response surface method is adopted to approximate the limit-state function and the first-, second-order reliability method and the Monte Carlo simulation technique are used to calculate the probability of failure. Probabilistic stability assessments for a hypothetical two-layer slope and the Sugar Creek embankment were performed to verify the application potential to the slope stability problems. The examples show the successful implementation and the possibility of the extension of the proposed procedure to the variety of geotechnical engineering problems.

A Case Study of Rainfall-Induced Slope Failures on the Effect of Unsaturated Soil Characteristics (불포화 지반특성 영향에 대한 강우시 사면붕괴의 사례 연구)

  • Oh, Seboong;Mun, Jong-Ho;Kim, Tae-Kyung;Kim, Yun Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.167-178
    • /
    • 2008
  • Rainfall-induced slope failures were simulated by seepage and stability analyses for actual slopes of weathered soils. After undisturbed sampling and testing on a specimen of unsaturated conditions, a seepage analysis was performed under actual rainfall and it was found that the pore water pressure increased at the boundary of soil and rock layers. The safety factor of slope stability decreased below 1.0 and the failure of actual slope could be simulated. Under design rainfall intensity, the seepage analysis could not include the effects of the antecedent rainfall and the rainfall duration. Due to these limitations, the safety factor of slope stability resulted in above 1.0, since the hydraulic head of soil layers had not be affected significantly. In the analysis of another slope failure, the parameters of unsaturated conditions were evaluated using artificial neural network (ANN). In the analysis of seepage, the boundary of soil and rock was saturated sufficiently and then the safety factor could be calculated below 1.0. It was found that the failure of actual slope can be simulated by ANN-based estimation.