Cell culture systems for the protozoan Eimeria are not yet available. The present study was conducted to develop an animal model system by inoculating animals with a live Eimeria vaccine. This study was conducted on 3-day-old chickens (n = 20) pretreated with cyclophosphamide. The chickens were divided into 2 groups: the control group (n = 10) and the inoculated group that received the live Eimeria vaccine (n = 10). During the study period, we compared the clinical signs, changes in body weight, and number of oocysts shed in the feces of the control and inoculated group. This study showed that oocyst shedding was significantly higher in the chickens inoculated with live Eimeria oocysts than in the control chickens. Moreover, body weight gain was lesser in the animals in the inoculated group than in the control animals. Fecal oocyst shedding was observed in the inoculated animals. On the basis of these findings, we suggest that live Eimeria vaccination with cyclophosphamide pretreatment may be used to obtain an effective animal model for studying protozoan infections. This animal study model may eliminate the need for a tedious continuous animal inoculation process every 6 months because the live coccidiosis vaccine contains live oocysts.
First lactation records of 683 Murrah buffaloes maintained at National Dairy Research Institute, Karnal, were used for comparing the sire evaluation for age at first calving, first lactation 305-day or less milk yield and first service period. The sires were evaluated using Simple daughters average, Contemporary comparison, Least-squares and BLUP methods. The BLUP evaluations were obtained under single-, two- and three-trait individual animal models. The results revealed that for taking a decision regarding the method of sire evaluation to be used for selecting sires with high breeding values, criteria of the rank correlation could be misleading and comparison of the selected sires is likely to give a veritable picture. The Best Linear Unbiased Prediction method under multi-trait animal model incorporating first lactation milk yield with first service period as a covariable and age at first calving in the model was found to be more efficient and accurate for sire selection in Murrah buffaloes.
Lactation curves of dairy cows were generated using three models, namely; incomplete gamma function (model 1), polynomial inverse function (model 2) and non-linear regression (model 3). Secondary milk yield data of 27 cows which had completed 6 lactations were used in this study. Milk yield records (once a week) throughout the lactation and from the first three months of lactation were fitted to the models. Estimation of total milk yield by model 3 using the data once a week throughout the lactation resulted in smaller % bias and standard error than those generated from model 1 and 2. But, model 2 was more accurate in predicting the 305-day milk yield equivalent closer to actual yields with smaller bias % and error using partial records up to 3 months. Also, model 2 was able to estimate the time to reach peak yield close to the actual data using partial records and model 2 could be used as a tool to advise farmers on appropriate feeding and management practices to be adopted.
Jo, Gwanggon;Ha, Taehwan;Yoon, Sanghoo;Jang, Yuna;Jung, Minwoong
Journal of The Korean Society of Agricultural Engineers
/
v.62
no.1
/
pp.61-70
/
2020
To estimate the ventilation volume of mechanically ventilated swine farms, various regression models were applied, and errors were compared to select the regression model that can best simulate actual data. Linear regression, linear spline, polynomial regression (degrees 2 and 3), logistic curve, generalized additive model (GAM), and gompertz curve were compared. Overfitting models were excluded even when the error rate was small. The evaluation criteria were root mean square error (RMSE) and mean absolute percentage error (MAPE). The evaluation results indicated that degree 3 exhibited the lowest error rate; however, an overestimation contradiction was observed in a certain section. The logistic curve was the most stable and superior to all the models. In the estimation of ventilation volume by all of the models, the estimated ventilation volume of the logistic curve was the smallest except for the model with a large error rate and the overestimated model.
Model' is one of the well-used, but poorly understood word in the neurobehavioral research. After Darwin's evolutionary theory, it has been generally believed that human is different from animals in terms of the complexity, not of the essential. This notion could be applied to the mind as well as body. Therefore, it became possible to establish animal models in the scientific field of mind. Experimental analysis of the animal behavior becomes an important area for establishing an animal model of human psychopathology because behavior is the ambassador of the mind. A model emphasizes a structural correspondence between sets of causally related variables in two different domains such as the animal and the human. The first selection of elements of the two domains in correspondence called the initial analogy. Once the initial analogy is formed. causally related variables in the two domains are examined and arrayed The structural parallel is the formal analogy of a model, and similarities between corresponding variables are called material analogy. Models may serve any of three major functions ; heuristic, evidential and representative. In many cases, utilizing models may be more practical than directly assessing the domain of primary interest, since technical and/or ethical problems are more serious in the human domain. Although modeling is important to study human psychopathology, rare animal models approved to be a good model for the human psychopathology up to now. Developing the appropriate model is urgent to solve many problems raised from human psychopathology.
The estimation of variance components or variance ratios in linear model is an important issue in plant or animal breeding fields, and various estimation methods have been devised to estimate variance components or variance ratios. However, many traits of economic importance in those fields are observed as dichotomous or polychotomous outcomes. The usual estimation methods might not be appropriate for these cases. Recently threshold linear model is considered as an important tool to analyze discrete traits specially in animal breeding field. In this note, we consider a hierarchical Bayesian method for the threshold animal model. Gibbs sampler for making full Bayesian inferences about random effects as well as fixed effects is described to analyze jointly discrete traits and continuous traits. Numerical example of the model with two discrete ordered categorical traits, calving ease of calves from born by heifer and calving ease of calf from born by cow, and one normally distributed trait, birth weight, is provided.
Genetic parameters for birth weights (BWT), calving ease scores observed from calves born by heifers (CEH), and calving ease scores observed from calves born by cows (CEC) were estimated using Bayesian methodology with Gibbs sampling in different threshold animal models. Data consisted of 77,458 records for calving ease scores and birth weights in Gelbvieh cattle. Gibbs samplers were used to obtain the parameters of interest for the categorical traits in two univariate threshold animal models, a bivariate threshold animal model, and a three-trait linear-threshold animal model. Samples of heritabilities and genetic correlations were calculated from the posterior means of dispersion parameters. In a univariate threshold animal model with CEH (model 1), the posterior means of heritabilities for calving ease was 0.35 for direct genetic effects and 0.18 for maternal genetic effects. In the other univariate threshold model with CEC (model 2), the posterior means of heritabilities of CEC was 0.28 for direct genetic effects and 0.18 for maternal genetic effects. In a bivariate threshold model with CEH and CEC (model 3), heritability estimates were similar to those in unvariate threshold models. In this model, genetic correlation between heifer calving ease and cow calving ease was 0.89 and 0.87 for direct genetic effect and maternal genetic effects, respectively. In a three-trait animal model, which contained two categorical traits (CEH and CEC) and one continuous trait (BWT) (model 4), heritability estimates of CEH and CEC for direct (maternal) genetic effects were 0.40 (0.23) and 0.23 (0.13), respectively. In this model, genetic correlation estimates between CEH and CEC were 0.89 and 0.66 for direct genetic effects and maternal effects, respectively. These estimates were greater than estimates between BWT and CEH (0.82 and 0.34) or BWT and CEC (0.85 and 0.26). This result indicates that CEH and CEC should be high correlated rather than estimates between calving ease and birth weight. Genetic correlation estimates between direct genetic effects and maternal effects were -0.29, -0.31 and 0.15 for BWT, CEH and CEC, respectively. Correlation for permanent environmental effects between BWT and CEC was -0.83 in model 4. This study can provide genetic evaluation for calving ease with other continuous traits jointly with assuming that calving ease from first calving was a same trait to calving ease from later parities calving. Further researches for reliability of dispersion parameters would be needed even if the more correlated traits would be concerned in the model, the higher reliability could be obtained, especially on threshold model with property that categorical traits have little information.
Kim, Yong-Min;Choi, Tae-Jeong;Cho, Eun-Seok;Cho, Kyu-Ho;Chung, Hak-Jae;Jeong, Yong-Dae
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.11
/
pp.350-356
/
2017
This study was conducted to examine the influence of the maternal genetic effect of swine on their economic traits through the estimation of their genetic parameters, breeding value and genetic trends using an animal model. The data on Duroc pigs, Korean Native Pigs and Synthetic pigs (Duroc ${\times}$ Korean Native Pig) from 2000 to 2015 were obtained from the National Institute of Animal Science in Korea and used to estimate the genetic parameters for the average daily gain (ADG) and backfat thickness (BFT). Model 1 included the additive genetic effect of the animals, Model 2 consisted of Model 1 + the maternal genetic effect and Model 3 consisted of Model 2 + the maternal permanent environment effect. The heritability calculated by estimating the additive genetic effect was higher than that calculated by estimating the maternal genetic effect using the maternal animal model. The estimated genetic correlations between the additive and maternal genetic effects for the ADG and BF were strongly negative. Thus, the estimation of the breeding value can be used to select the most appropriate individuals and make an optimal breeding scheme.
Real time ultrasonic measurements for 13th rib fat thickness (LBF), longissimus muscle area (LEMA) and marbling score (LMS) of live animal at pre-harvest and subsequent carcass measurements for fat thickness (BF), longissimus muscle area (EMA), marbling score (MS) as well as body weight of live animal, carcass weight (CW), dressing percentage (DP), and total merit index (TMI) on 755 Korean beef steers were analyzed to estimate genetic parameters. Data were analyzed using multivariate animal models with an EM-REML algorithm. Models included fixed effects for year-season of birth, location of birth, test station, age of dam, linear and quadratic covariates for age or body weight at slaughter and random animal and residual effects. The heritability estimates for LEMA, LBF and LMS on RTU scans were 0.17, 0.41 and 0.55 in the age-adjusted model (Model 1) and 0.20, 0.52 and 0.55 in the weight-adjusted model (Model 2), respectively. The Heritability estimates for subsequent traits on carcass measures were 0.20, 0.38 and 0.54 in Model 1 and 0.23, 0.46 and 0.55 in Model 2, respectively. Genetic correlation estimate between LEMA and EMA was 0.81 and 0.79 in Model 1 and Model 2, respectively. Genetic correlation estimate between LBF and BF were high as 0.97 in Model 1 and 0.98 in Model 2. Real time ultrasonic marbling score were highly genetically correlated to carcass MS of 0.89 in Model 1 and 0.92 in Model 2. These results indicate that RTU scans would be alterative to carcass measurement for genetic evaluation of meat quality in a designed progeny-testing program in Korean beef cattle.
Objective: This study aimed to validate and evaluate the dry matter (DM) intake prediction model of the Korean feeding standards for dairy cattle (KFSD). Methods: The KFSD DM intake (DMI) model was developed using a database containing the data from the Journal of Dairy Science from 2006 to 2011 (1,065 observations 287 studies). The development (458 observations from 103 studies) and evaluation databases (168 observations from 74 studies) were constructed from the database. The body weight (kg; BW), metabolic BW (BW0.75, MBW), 4% fat-corrected milk (FCM), forage as a percentage of dietary DM, and the dietary content of nutrients (% DM) were chosen as possible explanatory variables. A random coefficient model with the study as a random variable and a linear model without the random effect was used to select model variables and estimate parameters, respectively, during the model development. The best-fit equation was compared to published equations, and sensitivity analysis of the prediction equation was conducted. The KFSD model was also evaluated using in vivo feeding trial data. Results: The KFSD DMI equation is 4.103 (±2.994)+0.112 (±0.022)×MBW+0.284 (±0.020)×FCM-0.119 (±0.028)×neutral detergent fiber (NDF), explaining 47% of the variation in the evaluation dataset with no mean nor slope bias (p>0.05). The root mean square prediction error was 2.70 kg/d, best among the tested equations. The sensitivity analysis showed that the model is the most sensitive to FCM, followed by MBW and NDF. With the in vivo data, the KFSD equation showed slightly higher precision (R2 = 0.39) than the NRC equation (R2 = 0.37), with a mean bias of 1.19 kg and no slope bias (p>0.05). Conclusion: The KFSD DMI model is suitable for predicting the DMI of lactating dairy cows in practical situations in Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.