• 제목/요약/키워드: ANG-2

검색결과 4,981건 처리시간 0.038초

Flavonoids from the Seeds of Astragalus sinicus Linne

  • Yeom, Seung-Hwan;Kim, Min-Kee;Kim, Hyun-Jung;Shim, Jae-Geul;Lee, Jae-Hee;Lee, Min-Won
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.258.3-258.3
    • /
    • 2003
  • The Seeds of Astragalus sinicus(Leguminosae) is used for the treatment of excretion of urine, circulation of blood and the throat inflammation in Korean traditional medicine. Eight flavonoids were isolated from 80% Acetone extracts. The structure were elucidated as Quercetin 3-O-${\beta}$-D-Xylopyranosyl-(1\longrightarrow2)-${\beta}$-D-galactopyranoside, ampelopsin and myricetin by phytochemical and spectral evidences. The other compounds are understudied by 2D-NMR.

  • PDF

Anti inflammatory Activity of Flavonoids from the Seeds of Astragalus sinicus Linne

  • Yeom, Seung-Hwan;Kim, Min-Kee;Kim, Hyun-Jung;Shim, Jae-Geul;Lee, Jae-Hee;Lee, Min-Won
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.266.2-266.2
    • /
    • 2003
  • The seeds of Astragalus sinicus grows in Korea have been used for oriental traditional medicine as the remedies for inflammation. Eight flavonoids were isolated from the Seeds of Astragalus sinicus and studied its anti-inflammatory activity. Some flavonoid compounds showed significant nitrogen monoxide(NO) production inhibitory activity in IFN-${\gamma}$, LPS stimulated RAW 264.7 cell. There compounds also showed significant antioxidative in DPPH assay. (omitted)

  • PDF

Far-infrared rays enhance mitochondrial biogenesis and GLUT3 expression under low glucose conditions in rat skeletal muscle cells

  • Seo, Yelim;Kim, Young-Won;Lee, Donghee;Kim, Donghyeon;Kim, Kyoungseo;Kim, Taewoo;Baek, Changyeob;Lee, Yerim;Lee, Junhyeok;Lee, Hosung;Jang, Geonwoo;Jeong, Wonyeong;Choi, Junho;Hwang, Doegeun;Suh, Jung Soo;Kim, Sun-Woo;Kim, Hyoung Kyu;Han, Jin;Bang, Hyoweon;Kim, Jung-Ha;Zhou, Tong;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권2호
    • /
    • pp.167-175
    • /
    • 2021
  • Far-infrared rays (FIR) are known to have various effects on atoms and molecular structures within cells owing to their radiation and vibration frequencies. The present study examined the effects of FIR on gene expression related to glucose transport through microarray analysis in rat skeletal muscle cells, as well as on mitochondrial biogenesis, at high and low glucose conditions. FIR were emitted from a bio-active material coated fabric (BMCF). L6 cells were treated with 30% BMCF for 24 h in medium containing 25 or 5.5 mM glucose, and changes in the expression of glucose transporter genes were determined. The expression of GLUT3 (Slc2a3) increased 2.0-fold (p < 0.05) under 5.5 mM glucose and 30% BMCF. In addition, mitochondrial oxygen consumption and membrane potential (ΔΨm) increased 1.5- and 3.4-fold (p < 0.05 and p < 0.001), respectively, but no significant change in expression of Pgc-1a, a regulator of mitochondrial biogenesis, was observed in 24 h. To analyze the relationship between GLUT3 expression and mitochondrial biogenesis under FIR, GLUT3 was down-modulated by siRNA for 72 h. As a result, the ΔΨm of the GLUT3 siRNA-treated cells increased 3.0-fold (p < 0.001), whereas that of the control group increased 4.6-fold (p < 0.001). Moreover, Pgc-1a expression increased upon 30% BMCF treatment for 72 h; an effect that was more pronounced in the presence of GLUT3. These results suggest that FIR may hold therapeutic potential for improving glucose metabolism and mitochondrial function in metabolic diseases associated with insufficient glucose supply, such as type 2 diabetes.

Bcl-2 Knockdown Accelerates T Cell Receptor-Triggered Activation-Induced Cell Death in Jurkat T Cells

  • Lee, Yun-Jung;Won, Tae Joon;Hyung, Kyeong Eun;Lee, Mi Ji;Moon, Young-Hye;Lee, Ik Hee;Go, Byung Sung;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권1호
    • /
    • pp.73-78
    • /
    • 2014
  • Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-2 expression in Jurkat T cells, and this increased TCR-triggered AICD and enhanced TNFR gene expression. Also, knockdown of Bcl-2 in Jurkat T cells suppressed the gene expression of FLIP, TNF receptor-associated factors 3 (TRAF3) and TRAF4. Furthermore, suppressed Bcl-2 expression increased caspase-3 and diminished nuclear factor kappa B (NF-${\kappa}B$) translocation.

방사선을 조사한 혈관내피세포에 대한 Angiopoietin-1의 방사선 방어 기작 (Angiopoietin-1 Is An Radiation-induced Apoptosis Survival Factor for Human Umbilical Vein Endothelial Cells)

  • 이송재;장재철
    • 대한방사선치료학회지
    • /
    • 제12권1호
    • /
    • pp.166-173
    • /
    • 2000
  • Angiopoietin-1(Ang-1) is a vasculogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. We examined the effect of angiopoietin-1(Ang-1) on radiation-induced apoptosis in human umbilical vein endothelial cells(HUVECS) and receptor/second messenger signal transduction pathway for Ang-1's effect on HUVECs. The percent of apoptotic cells under control condition(0Gy) was $8.2\%$. Irradiation induced apoptosis was increased in a dose(1, 5, 10, and 15Gy)- and time 12, 24, 48 and 72hr)-dependent manner. The percent of apoptotic cells was approximately $34.9\%$ after 15 Gy of irradiation. Under these conditions, pretreatment with Ang-1's (50, 100, 200, and 400 ng/ml) inhibited irradiation-induced apoptosis in human umbilical vein endothelial cells in a dose-dependent manner. Two hundred ng/ml of Ang-1 inhibited approximately $55-60\%$ of the apoptotic events that occurred in the 10 Gy-irradiated cells. Pre-treatment with soluble Tie2 receptor, but not Tie1 receptor, blocked the Ang-1's antiapoptotic effects. Phosphatidylinositol 3'-kinase (P13-kinase) specific inhibitor, wortmanin and LY294002, blocked the Ang-1-induced antiapoptotic effect. Ang-1 promotes the survival of endothelial cells in irradiation-induced apoptosis through Tie2 receptor binding and P13-kinase activation. Pretreatment of Ang-1 could be beneficial in maintaining normal endothelial cell integrity during irradiation therapy.

  • PDF

Heat Shock Protein 60 Is a $Mg^{2+}$-dependent, Membrane-associated and Neutral Sphingomyelinase That Mediates TNF-alpha Signaling

  • Jung, Sang-Mi;Jung, Sung-Yun;Chang, Dong-Hoon;Jeong, Hyun-Chul;Chin, Mi-Reyoung;Jeong, Eui-Man;Jo, Dong-Hwan;Jeon, Hyung-Jun;Jung, Kwnag-Mook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.103.2-103.2
    • /
    • 2003
  • The hydrolysis of sphingomyelin (SM), known as the SM pathway, is induced by the activation of sphingomyelinase (SMase) to generate the second messenger ceramide, which plays a key role in cellular responses such as apoptosis, differentiation, senescence, and inflammation. Here, we identified a 60 kDa membrane-associated, neutral and Mg$\^$2+/-dependent SMase, termed N-SMase $\varepsilon$, from mammalian brains, which was revealed as the heat shock protein 60 (HSP60) through cDNA cloning and mass spectrometrical analysis. (omitted)

  • PDF