• Title/Summary/Keyword: AMR refrigerator

Search Result 4, Processing Time 0.022 seconds

Development of the active magnetic regenerative refrigerator for room temperature application (상온 능동형 자기 재생 냉동기의 개발)

  • Park, I.;Kim, Y.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2012
  • In this paper, an investigation of a room temperature active magnetic regenerative refrigerator is carried out. Experimental apparatus includes two active magnetic regenerators containing 186 g of Gd spheres. Four E-type thermocouples are installed inside the Active magnetic regenerator(AMR) to observe the instantaneous temperature variation of AMR. Both warm and cold heat exchangers are designed for large temperature span. The cold heat exchanger, which separates the two AMRs, employs a copper tube with length of 80 mm and diameter of 6.35 mm. In order to minimize dead volume between the warm heat exchanger and AMRs, the warm heat exchangers are located close to the AMRs. The deionized water is used as a heat transfer fluid, and maximum 1.4 T magnetic field is supplied by Halbach array of permanent magnets. The AMR plate, which contains the warm and the cold heat exchangers and the AMRs, has reciprocating motion using a linear actuator and each AMR is alternatively magnetized and demagnetized by a Halbach array of permanent magnet. Since the gap of the Halbach array of permanent magnets is 25 mm and two warm heat exchangers have the motion through it, a compact printed circuit heat exchanger (PCHE) is used as a warm heat exchanger. A maximum no-load temperature span of 26.8 K and a maximum cooling power of 33 W are obtained from the fabricated Active Magnetic Regenerative Refrigerator (AMRR).

AC loss of HTS magnet for AMR refrigerator using magnetic field formulation and edge element in cylindrical coordinates

  • Kim, Seokho;Park, Minwon;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • AMR (Active Magnetic Regenerative) refrigerators require the large variation of the magnetic field and a HTS magnet can be used. The amount of AC loss is very important considering the overall efficiency of the AMR refrigerator. However, it is very hard to estimate the precise loss of the HTS magnet because the magnetic field distribution around the conductor itself depends on the coil configuration and the neighboring HTS wires interact each other through the distorted magnetic field by the screening current Therefore, the AC loss of HTS magnet should be calculated using the whole configuration of the HTS magnet with superconducting characteristic. This paper describes the AC loss of the HTS magnet by an appropriate FEM approach, which uses the non-linear characteristic of HTS conductor. The analysis model is based on the 2-D FEM model, called as 'magnetic field formulation and edge-element model', for whole coil configuration in cylindrical coordinates. The effects of transport current and stacked conductors on the AC loss are investigated considering the field-dependent critical current. The PDE model of 'Comsol multiphysics' is used for the FEM analysis with properly implemented equations for axisymmetric model.

Magnetic refrigerator for hydrogen liquefaction

  • Numazawa, T.;Kamiya, K.;Utaki, T.;Matsumoto, K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

Experimental investigation on the room temperature active magnetic regenerator with permanent magnet array (영구자석 배열을 이용한 능동형 자기재생 냉동기에 대한 실험적 연구)

  • Kim, Young-Kwon;Jeong, Sang-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.186-191
    • /
    • 2008
  • In this study, a room temperature AMRR (Active magnetic regenerative refrigerator) was fabricated, and experimentally investigated. Gadolinium (Gd) was selected as a magnetic refrigerant with Curie temperature of 293 K. Permanent magnet was utilized to magnetize and demagnetize the AMR. To produce large magnetic field above 1 T in the magnetic refrigeration space, a special arrangement of permanent magnets, so called Halbach array, is employed. Sixteen segments of the permanent magnets magnetized different direction, constitute a hollow cylindrical shaped permanent magnet. The AMR is reciprocated along the bore of the magnet array and produces cooling power. Helium is selected as the working fluid and a helium compressor is utilized to supply helium flow to the regenerator. The fabricated AMRR has different structure and compared to a convectional AMRR since it has an additional volume after the regenerator. Therefore, the cooling ability is generated not only by magnetocaloric effect of magnetic refrigerant but also by the pulse tube effect. It is verified that the cooling ability of AMR is increased due to the magnetocalric effect by the fact that the temperature span becomes $16^{\circ}C$ while the temperature span is only $8^{\circ}C$ when the magnetic field is not applied to the regenerator.

  • PDF