• Title/Summary/Keyword: AMESIM

Search Result 178, Processing Time 0.028 seconds

Effects of Working Fuel Temperature on Injection Characteristics of Bypass Type Piezo Injector (작동 연료온도가 Bypass type 피에조 인젝터의 분사 특성에 미치는 영향)

  • Cho, Insu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.2
    • /
    • pp.66-72
    • /
    • 2019
  • Diesel vehicles suffer from poor starting and running problems at cold temperatures. Diesel vehicles have the characteristic that CO and PM are reduced or similarly discharged when going from low temperature to high temperature. In this study, a bypass type piezo injector for electronic control based common rail injection system was used. Numerical analysis using injector drive analysis model was performed to analyze injector drive and internal fuel flow characteristics according to fuel temperature change. The results show that the rate of density change due to the fuel temperature is proportional, and that the effect of the kinematic viscosity is relatively large between $-20^{\circ}C$ and $0^{\circ}C$. Comparing the results of temperature condition at $0^{\circ}C$ and $20^{\circ}C$, it is considered that the viscosity is more correlated with the needle displacement than the pressure chamber of the delivery chamber.

Effect of Control Method and Plunger Profile of Variable Valve on Flow Control of a Liquid Rocket Engine (액체로켓엔진의 유량조절에 가변밸브의 조절기법과 플런저 형상이 미치는 영향)

  • Lee, Joong-Youp;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.35-47
    • /
    • 2011
  • Dynamic characteristics of a flow control valve, which plays an important role in thrust and O/F control of liquid rocket engines, have been analyzed by the AMESim simulator modeling. The speed control method was proposed for the control of the flow valve equipped with a BLDC motor. The experimental results demonstrated the feasibility of systematical application as well as the performance of the speed control method. Moreover, the speed control method for BLDC motor is much simpler than the P control method in complex flow systems. With the speed control method, the control flow characteristics were evaluated according to plunger shapes. Consequently, same plunger shape proved to be more efficient in the mixture ratio control operated by two flow valves. It was also shown that the appropriate modification of plunger shapes could reduce the mixture ratio perturbation by 0.5%.

A Study on the Approximate model of the Flow rate Characteristics in External Gear pump for EHPS (전기 유압식 동력 조향시스템용 외접형 기어펌프의 유량특성 근사식에 관한 연구)

  • Kim, Ji-Hye;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.548-553
    • /
    • 2013
  • EHPS(Electro-Hydraulic Power Steering) is a system to generate the steering operation force from the electric motor connected directly to the oil pump. To optimize the manufacturing cost and efficiency of the performance of the steering system is very important. Until now, the development of the hydraulic system is implemented by the field test which needs a significant time and cost. In this paper, flow measurement of an external gear pump is performed. Then using the experimental results, an approximate model expressed by flow rate characteristics is proposed to calculate the discharge flow rate. Proposed approximate model is verified by comparing with the experimental data and AMESim results. As the experimental data and AMESim results agree well, the approximate model data can be used as an alternative to highly cost experimental procedure.

Modeling and Simulation of CCTF Fuel Supply System (연소기연소시험설비(CCTF) 연료공급시스템 해석)

  • Chung, Yong-Gahp;Lee, Kwang-Jin;Cho, Nam-Kyung;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.892-897
    • /
    • 2011
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility(CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The fuel supply system modeling using AMESim was performed based on the results of the detailed design, and the fuel supply characteristics was analyzed in this paper.

  • PDF

Development of Analysis Model for High-Performance Heat Pump (고성능 히트펌프 해석모델 개발 연구)

  • Yim, Sang-Sik;Kim, Ki-Bum;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6053-6059
    • /
    • 2013
  • Heat pumps have attracted considerable attention as a green energy system because they use renewable energy, such as geothermal, solar energy and waste heat, and can have a low electricity consumption rate compared to other conventional electric heating system. Many studies of high efficient heat pump system design was performed previously,but it is not easy to find any an analytical model that consists of components (e.g. compressor, heat exchangers, and expansion valve), not only having an interrelation and interconnection each other but also being flexible to any change in geometry and operating parameters. In this study, a computational model was developed for a heat pump with warm air as a heat source using the one-dimensional modeling software, AMESim. In combination with an independently-developed analytical model for a scroll compressor, the heat pump model can simulate the physical characteristics and actual behavior of the heat pump precisely. In addition, the reliability of the model was improved by verifying the simulation results using experimental data. The simulation data fell into the 10% error range compared with the experimental data. The heat pump model can be used for system optimization studies of product development and applied to other applications in a range of industrial field.

Design review of fuel vent-relief valve (연료 벤트/릴리프 밸브의 설계 분석)

  • Jang, JeSun;Kil, GyoungSub;Han, SangYeop;Park, Jong-Ho
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • A vent-relief valve performs as a safety-valve assembly for liquid propellant feeding system of space launch vehicle, which relives pressurant propellant tanks during the filling and the flight. At vent mode, valve is opened and closed by driving pneumatic pressure, and at relief mode, valve is automatically operated to set relief pressure. In this study, we have analyzed a basic layout of vent-relief valve which is designed using foreign LVs(Saturn) to satisfy requirements of Korean Space Launch Vehicle. The simulation model of vent-relief valve is designed by using the AMESim code to verify design parameters and evaluate pneumatic behaviors of valve. In this study, we performed dynamic characteristic simulations on design parameters. And we could predict opening/closing time and pressures, operating performances on design parameters. Using this results, we could suggest detail design and boundary conditions of design.

Analysis of Hydraulic Characteristics of Two Solenoid-driven Injectors for CRDi System (2개 솔레노이드 구동방식별 CRDi용 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Lee, Jung-Hyup;Kim, Min-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.140-147
    • /
    • 2011
  • The injection nozzle of an electro-hydraulic injector for the common rail Diesel fuel injection system is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the slenoid actuator was considered as a prime movers in high pressure Diesel injector. Namely a solenoid-driven Diesel injector with different driving current types, as a general method driven by solenoid coil energy, has been applied with a purpose to develop the analysis model of the solenoid actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the solenoid-driven injector, the circuit model has been developed as a unified approach to mechanical modeling in this study. As this analytic results, we know the suction force and first order time lag for driving force can be endowed in solenoid-driven injector in controlling the injection rate. Also it can predict that the input current wave exerted on solenoid coil is the dominant factor which affects on the initial needle behavior of solenoid-driven injector than the hydraulic force generated by the constant injection pressure.

Development and Validation of Simulation Model for A Scroll Compressor (스크롤 압축기 해석 모델 개발 및 검증)

  • Yim, Sang-Sik;Lee, Young-Seon;Park, Sung-Young;Kim, Ki-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.1976-1982
    • /
    • 2012
  • Compressor is one of the most widely employed component in fluid machinery system. It takes tremendous efforts to improve compressor efficiency which affects the coefficient of performance of air-conditioning and refrigeration systems directly. Among various types of compressor, scroll-type compressor is commonly prevalent one with its high compression capability despite relatively small size and weight. Numerous experimental studies have been done to develop for the scroll-type compressor; however, computational models to evaluate the compressor performance or efficiency are not much available in the course of compressor designing process. In this study, a computational model was developed on the basis of geometrical theory using 1-D commercial software AMESim. A simulation study was carried out using the model, and the simulation result was validated with analytical data. This research is expected to provide a viable tool for developing and optimizing a scroll-type compressor.

Analysis of operating characteristics and design review of oxidizer fill-drain valve (산화제 충전/배출 밸브의 설계 검토 및 작동 특성 분석)

  • Jang, Je-Sun;Kwon, Oh-Sung;Lee, Kyung-Won;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.79-88
    • /
    • 2011
  • A fill-drain valve is operated by provided control gas at the ground for liquid propellant feeding system of space launch vehicle, which fills or drains on-board propellant tanks with a cryogenic oxidizer. We have analyzed and modified the data of fill-drain valve designed by Yuzhnoye. The simulation model of fill-drain valve is designed by using the AMESim code to predict and evaluate the dynamic characteristics and pneumatic behavior of valve. In this study, we performed a dynamic characteristic simulation on design parameter. And we could predict opening/closing time and pressures, operating performances on design parameters. This study will serve as one of reference guides to enhance the developmental efficiency of fill-drain valves with the various operating requirements, which shall be used in the Koreanized Space Launch Vehicle.

Modeling and Simulation of Combustion Chamber Test Facility Oxidizer Supply System (연소기 연소시험설비 산화제 공급시스템 해석)

  • Chun, Yonggahp;Cho, Namkyung;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.92-97
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The oxidizer supply system modeling using AMESim was performed based on the results of the detailed design, and the oxidizer supply characteristics was analyzed in this paper.