• Title/Summary/Keyword: AMBA bus

Search Result 72, Processing Time 0.027 seconds

Performance Analysis for Multimedia Video Codec on On-Chip Network (온칩 네트워크 기반 멀티미디어 비디오 코덱 성능 분석)

  • Chang, J.Y.;Kim, W.J.;Byun, K.J.;Eum, N.W.
    • Smart Media Journal
    • /
    • v.1 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • In this paper, the performance analysis for multimedia video codec(MPEG-4, H.264) on on-chip network communication architecture is presented. The On-Chip Network (OCN) is the new communication architecture of multimedia SoC design that overcomes the limits of On-Chip Bus architecture by providing higher data traffic bandwidth, reusability and higher scalability. We compared the performance of MPEG-4, H.264 decoder based on-chip network and AMBA on-chip bus. Experimental results show that the performance of MPEG-4, H.264 based on on-chip network is improved over 33~56% compared to the design based on AMBA on-chip bus.

  • PDF

Implementation of ISA Bus Protocol Converter as an AHB Slave (AHB Slave를 위한 ISA 버스 프로토콜 변환기 구현)

  • 최상익;강신욱;박향숙
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.919-921
    • /
    • 2004
  • 최근 임베디드 시스템 설계에서 저전력 소모와 SoC가 주된 관심사가 되면서, ARM 프로세서와 AMBA 버스가 각광을 받고 있다. AMBA 버스가 고속 모듈에 대해서는 장점을 지니지만. 저속 모듈과의 인터페이스에는 많은 제약이 따른다. 따라서 속도가 서로 다른 이종 모듈간에 속도 보상을 위한 bridge 가 필요하다. 이러한 용도로 APB bridge가 표준으로 자리 매김하고 있지만, 속도가 고정되어 있기 때문에 융통성이 배제된다. 본 논문에서는 이러한 단정을 보완하기 위해, 구조가 간단하고 구현이 쉬운 ISA 방식의 bridge를 제안하여, 많은 주변장치들을 손쉽게 AHB Slave로 인터페이스 할 수 있게 만든다.

Efficient AMBA Based System-on-a-chip Core Test With IEEE 1500 Wrapper (IEEE 1500 래퍼를 이용한 효과적인 AMBA 기반 시스템-온-칩 코아 테스트)

  • Yi, Hyun-Bean;Han, Ju-Hee;Kim, Byeong-Jin;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.61-68
    • /
    • 2008
  • This paper introduces an embedded core test wrapper for AMBA based System-on-Chip(SoC) test. The proposed test wrapper is compatible with IEEE 1500 and can be controlled by ARM Test Interface Controller(TIC). We use IEEE 1500 wrapper boundary registers as temporal registers to load test results as well as test patterns and apply a modified scan test procedure. Test time is reduced by simultaneously performing primary input insertion and primary output observation as well as scan-in and scan-out.

Design of a Serial Port Interface Suitable for Bluetooth Embedded Systems (블루투스 임베디드 시스템에 적용 가능한 직렬 포트 인터페이스 설계)

  • Moon, Sangook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.903-906
    • /
    • 2009
  • In this contribution, we designed a serial port interface (SPI) suitable for embedded systems, especially for Bluetooth baseband. Proposed architecture is compatible for the APB bus in AMBA bus architecture. The 8-bit design of the SPI module is in charge of transferring the data and the instructions between the external devices and the coprocessors. We adopted the cyclic redundancy check method for the error correction. Also, we provided the interface for multimedia cards. The designed SPI module was automatically synthesized, placed, and routed. Implementation was performed through the Altera FPGA and well operated at 25MHz clock frequency.

  • PDF

SDRAM Fast Accession By DMA (Direct Memory Access) (DMA(Direct Memory Access)을 이용한 SDRAM의 고속 인터페이스)

  • Kim, Jin-Wan;Cho, Hyun-Mook
    • Journal of IKEEE
    • /
    • v.10 no.1 s.18
    • /
    • pp.22-29
    • /
    • 2006
  • In this paper, we present the efficient way of SDRAM accessing through the DMA(Direct Memory Access) when a microprocessor and peripheral blocks are sharing a SDRAM. The microprocessor is able to access a memory through the AMBA which is the system bus provided by ARM Corporation and DMAs are able to access a memory through their own bus. Peripheral block's reading and writing on the SDRAM memory are realized by the intermediate DMA in order to minimize times of access and addressing the memory. While the microprocessor doesn‘t access to the SDRAM aproaching other registers or occurring a hit signal for fetching program or data, the DMAs may read/write the data in the SDRAM without an interference of the AMBA. This way increases the efficient of the system and performance is more by 16.8%.

  • PDF

An Ameliorated Design Method of ML-AHB BusMatrix

  • Hwang, Soo-Yun;Jhang, Kyoung-Sun;Park, Hyeong-Jun;Bae, Young-Hwan;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.397-400
    • /
    • 2006
  • The multi-layer advanced high-performance bus (ML-AHB) BusMatrix proposed by ARM is an excellent architecture for applying embedded systems with low power. However, there is one clock cycle delay for each master in the ML-AHB BusMatrix of the advanced microcontroller bus architecture (AMBA) design kit (ADK) whenever a master starts new transactions or changes the slave layers. In this letter, we propose an improved design method to remove the one clock cycle delay in the ML-AHB BusMatrix of an ADK. We also remarkably reduce the total area and power consumption of the ML-AHB BusMatrix of an ADK with the elimination of the heavy input stages.

  • PDF

A Switch Wrapper Design for an AMBA AXI On-Chip-Network (AMBA AHB와 AXI간 연동을 위한 Switch Wrapper의 설계)

  • Yi, Jong-Su;Chang, Ji-Ho;Lee, Ho-Young;Kim, Jun-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.869-872
    • /
    • 2005
  • In this paper we present a switch wrapper for an AMBA AXI, which is an efficient on-chip-network interface compared to bus-based interfaces in a multiprocessor SoC. The AXI uses an idea of NoC to provide the increasing demands on communication bandwidth within a single chip. A switch wrapper for AXI is located between a interconnection network and two IPs connecting them together. It carries out a mode of routing to interconnection network and executes protocol conversions to provide compatibility in IP reuse. A switch wrapper consists of a direct router, AHB-AXI converters, interface modules and a controller modules. We propose the design of a all-in-one type switch wrapper.

  • PDF

A Design of AXI hybrid on-chip Bus Architecture for the Interconnection of MPSoC (MPSoC 인터커넥션을 위한 AXI 하이브리드 온-칩 버스구조 설계)

  • Lee, Kyung-Ho;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.8
    • /
    • pp.33-44
    • /
    • 2011
  • In this paper, we presents a hybrid on-chip bus architecture based on the AMBA 3.0 AXI protocol for MPSoC with high performance and low power. Among AXI channels, data channels with a lot of traffic are designed by crossbar-switch architecture for massively parallel processing. On the other hand, addressing and write-response channels having a few of traffic is handled by shared-bus architecture due to the overheads of (areas, interconnection wires and power consumption) reduction. In experiments, the comparisons are carried out in terms of time, space and power domains for the verification of proposed hybrid on-chip bus architecture. For $16{\times}16$ bus configuration, the hybrid on-chip bus architecture has almost similar performance in time domain with respect to crossbar on-chip bus architecture, as the masters's latency is differenced about 9% and the total execution time is only about 4%. Furthermore, the hybrid on-chip bus architecture is very effective on the overhead reduction, such as it reduced about 47% of areas, and about 52% of interconnection wires, as well as about 66% of dynamic power consumption. Thus, the presented hybrid on-chip bus architecture is shown to be very effective for the MPSoC interconnection design aiming at high performance and low power.

SoC Network Architecture for Efficient Multi-Channel On-Chip-Bus (효율적인 다중 채널 On-Chip-Bus를 위한 SoC Network Architecture)

  • Lee Sanghun;Lee Chanho;Lee Hyuk-Jae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.65-72
    • /
    • 2005
  • We can integrate more IP blocks on a silicon die as the development of fabrication technologies and EDA tools. Consequently, we can design complicated SoC architecture including multi-processors. However, most of existing SoC buses have bottleneck in on-chip communication because of shared bus architectures, which result in the performance degradation of systems. In most cases, the performance of a multi-processor system is determined by efficient on-chip communication and the well-balanced distribution of computation rather than the performance of the processors. We propose an efficient SoC Network Architecture(SNA) using crossbar routers which provide a solution to ensure enough communication bandwidth. The SNA can significantly reduce the bottleneck of on-chip communication by providing multi-channels for multi-masters. According to the proposed architecture, we design a model system for the SNA. The proposed architecture has a better efficiency by $40\%$ than the AMBA AHB according to a simulation result.

Design of a GPIO Unit for Bluetooth Embedded Systems (블루투스 임베디드 시스템을 위한 GPIO 설계)

  • Moon, San-Gook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.107-112
    • /
    • 2012
  • In this contribution, we designed a general purpose input/output (GPIO) suitable for embedded systems, especially for Bluetooth baseband. Proposed architecture is compatible for the APB bus in AMBA bus architecture. General purpose I/O should be used as multi-functional and versatile interrupt sources. We considered the edge-sensitive mode as well as the level-sensitive mode for acquiring the interrupt sources. Also, we provided an option to select the operation polarity for flexible application to the embedded systems. The designed GPIO module was automatically synthesized, placed, and routed. The proposed GPIO was implemented through the Altera FPGA and well operated at 25MHz clock frequency.