• Title/Summary/Keyword: ALE method

Search Result 144, Processing Time 0.021 seconds

A Study on Simple Calculation Method of Survival Time for Damaged Naval Ship Due to the Explosion (폭발에 의해 손상된 함정의 생존시간 간이계산법 연구)

  • Kim, Jae-Hyun;Park, Myung-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.211-217
    • /
    • 2007
  • Due to advanced new weapons and changes in the combat environment, survivability improvement methods for naval ship design have continuously evolved. Surface naval ships are easily detected by the enemy and, moreover, there are many attack weapons that may be used against surface naval ships. Therefore, it is important for modem naval ships, especially combat naval ships, to ensure survivability. In order to design a naval ship considering survivability, the designers are required to establish reasonable attack scenarios. An explosion may induce local damage as well as global collapse of the ship. Therefore, possible damage conditions should be realistically estimated at the design stage. In this study, an ALE technique was used to simulate the explosion analysis, and the survival capability of damaged naval ships was investigated. Especially, the author have establish the simple method of estimation of survival time for damaged naval ships.

  • PDF

The Spectrally Accurate Method Applied to Wave-Current Interaction as a Freak Wave Generation Mechanism

  • Sung, Hong-Gun;Hong, Key-Yong;Kyoung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. The present model of the fluid motion is based on the Navier-Stokes equations incorporating a velocity-pressure formulation. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an intermediate stage of development, solution procedure and characteristic aspects of the present modeling and numerical method features are addressed in detail, and numerical results for wave-current interaction is left as further study.

  • PDF

Adaptive line Enhancement by Using Adaptive Observer (적응 관측자를 사용한 ALE)

  • 최종호;이하정;이상욱
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.11
    • /
    • pp.819-825
    • /
    • 1987
  • The ALE problem, which tries to recover a sinusoidal signal corrupted by noise, has been solved using FIR filters. Recently several methods have been proposed using a norch filter of IIR type. In this study, the notch filter was represented with a parameter and auxiliary signals were generated by using an adaptive observer. A simple method is proposed to estimate the parameter. This method is tested under various circumstances by changing the input frequency, S/N ratio, and the type of the noise. The simulation shows that this method gives much better results than the other known methods with respect to the input S/N ratio and converging times. This method is simple and does not require much conputation, so it can be easily implemented in real time applications.

  • PDF

Calculation of Tensile Load between Roll Stands in Continuous Rolling System considering the Elasto-Plastic Behavior (탄소성 변형을 고려한 연속압연시 롤스탠드간 장력해석)

  • Shin, Nam-Do;Son, Il-Heon;Kang, Gyeong-Pil;Lee, Kyung-Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.286-287
    • /
    • 2008
  • The determination of roll speeds in continuous rolling system is an important factor along with the design of roll profile and roll gap. The tensile force on the workpiece induces reduced cross section area and the compressive force induces wrinkles. To determine the optimal roll speeds of current rough rolling system for wire rod, FE analysis was performed. We could predict the workpiece shape and the stress level more precisely by considering the elasto-plastic behavior of workpiece. Also the efficient analysis methodology is presented to reduce the calculation time by combining the ALE and lagrangian method.

  • PDF

Dynamic analysis of maritime gasbag-type floating bridge subjected to moving loads

  • Wang, Huan-huan;Jin, Xian-long
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.137-152
    • /
    • 2016
  • This paper studied the dynamic response of a new gasbag-type floating bridge under the effect of a moving load. The arbitrary Lagrangian-Eulerian (ALE) method was used to simulate the movement of seawater and air, and the penalty-based method was used to study the coupling between gasbags and fluid. A three-dimensional finite element model of the floating bridge was established, and the numerical model was verified by comparing with the experimental results. In order to prevent resonance, the natural frequencies and flexural mode shapes were analyzed. Based on the initial state analysis, the dynamic responses of the floating bridge subjected to different moving loads were investigated. Vertical displacements and radial deformations of gasbags under different loads were compared, and principal stress distributions of gasbags were researched while driving. The hinge forces between adjacent modules were calculated to ensure the connection strength. Besides, the floating bridge under wave impacting was analyzed. Those results can provide references for the analysis and design of this new floating bridge.

Baffled fuel-storage container: parametric study on transient dynamic characteristics

  • Lee, Sang-Young;Cho, Jin-Rae;Park, Tae-Hak;Lee, Woo-Yong
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.653-670
    • /
    • 2002
  • In order to ensure the structural dynamic stability of moving liquid-storage containers, the flow motion of interior liquid should be appropriately suppressed by means of mechanical devices such as the disc-type elastic baffle. In practice, the design of a suitable baffle requires a priori the parametric dynamic characteristics of storage containers, with respect to the design parameters of baffle, such as the installation location and inner-hole size, the baffle number, and so on. In this paper, we intend to investigate the parametric effect of the baffle parameters on the transient dynamic behavior of a cylindrical fuel-storage tank in an abrupt vertical acceleration motion. For this goal, we employ the ALE (arbitrary Lagrangian-Eulerian) kinematic description method incorporated with the finite element method.

Evaluation of sloshing Resistance Performance of LNG Carrier Insulation System by Fluid-Structure Interaction Analysis (유체-구조 연성 해석을 이용한 LNG 운반선 방열시스템의 내슬로싱 성능 평가)

  • Lee, Chi-Seung;Kim, Joo-Hyun;Kim, Wha-Soo;Noh, Byeong-Jae;Kim, Myung-Hyun;Lee, Jae-Myung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.557-560
    • /
    • 2011
  • In the present paper, the sloshing resistance performance of an LNG carrier insulation system is evaluated by fluid-structure interaction (FSI) analysis. For this analysis, the arbitrary Lagrangian Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG motion of a KC-1 type LNG carrier cargo tank. In addition, the global-local analysis method is introduced to reduce computational time and cost. The global model is built from shell elements to reduce the sloshing analysis time. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.

  • PDF

Numerical study of the effect of periodic jet excitation on cylinder aerodynamic instability

  • Hiejima, S.;Nomura, T.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.141-150
    • /
    • 2002
  • Numerical simulations based on the ALE finite element method are carried out to examine the aerodynamics of an oscillating circular cylinder when the separated shear flows around the cylinder are stimulated by periodic jet excitation with a shear layer instability frequency. The excitation is applied to the flows from two points on the cylinder surface. The numerical results showed that the excitation with a shear layer instability frequency can reduce the negative damping and thereby stabilize the aerodynamics of the oscillating cylinder. The change of the lift phase seems important in stabilizing the cylinder aerodynamics. The change of lift phase is caused by the merger of the vortices induced by the periodic excitation with a shear layer instability frequency, and the vortex merging comes from the high growth rate, the rapid increase of wave number and decrease of phase velocity for the periodic excitation in the separated shear flows.

Numerical Investigation of Hemodynamics in a Bileaflet Mechanical Heart Valve using an Implicit FSI Based on the ALE Approach

  • Hong, Tae-Hyub;Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2410-2414
    • /
    • 2008
  • Human heart valves diseased by congenital heart defects, rheumatic fever, bacterial infection, cancer may cause stenosis or insufficiency in the valves. Treatment may be with medication but often involves valve repair or replacement (insertion of an artificial heart valve). Bileaflet mechanical heart valves (BMHVs) are widely implanted to replace the diseased heart valves, but still suffer from complications such as hemolysis, platelet activation, tissue overgrowth and device failure. These complications are closely related to both flow characteristics through the valves and leaflet dynamics. In this study, the physiological flow interacting with the moving leaflets in a bileaflet mechanical heart valve (BMHV) is simulated with a strongly coupled implicit fluid-structure interaction (FSI) method which is newly organized based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (remeshing) in FLUENT. The simulated results are in good agreement with previous experimental studies. This study shows the applicability of the present FSI model to the complicated physics interacting between fluid flow and moving boundary.

  • PDF

Load Balancing for RFID Middleware (RFID 미들웨어를 위한 부하 분산)

  • Noh, Young-Sik;Byun, Yung-Cheol;Lee, Dong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2288-2293
    • /
    • 2013
  • An RFID middleware system that can process a large volume of RFID data became necessary with the advent of various kinds of ubiquitous services. In this paper, we propose a method to process massive RFID data and provide it to client applications based on ALE-compliant RFID middleware systems. To distribute the requests to collect and process the RFID data from clients, the proposed system gathers the resource information for RFID middleware systems and processes the requests from clients according to the information.