• Title/Summary/Keyword: ALCAM

Search Result 5, Processing Time 0.028 seconds

Activated Leukocyte Cell Adhesion Molecule: Expression in the Uterine Endometrium during the Estrous Cycle and Pregnancy in Pigs

  • Kim, Min-Goo;Shim, Jang-Soo;Seo, Hee-Won;Choi, Yo-Han;Lee, Chang-Kyu;Ka, Hak-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.919-928
    • /
    • 2011
  • The pig exhibits true epitheliochorial placentation, where the fetal membrane maintains attachment throughout pregnancy but does not invade into the maternal uterine endometrium. Accordingly, the expression and function of cell adhesion molecules are very important for embryo implantation and the establishment of pregnancy. In our recent microarray analysis, we found that activated leukocyte cell adhesion molecule (ALCAM) was expressed in the uterine endometrium during pregnancy in pigs. To better understand the roles of ALCAM in the establishment and maintenance of pregnancy, we examined ALCAM expression in the uterine endometrium during the estrous cycle and pregnancy in pigs. Real-time RT-PCR analysis showed that ALCAM was differentially expressed in the uterine endometrium during the estrous cycle and pregnancy, with the highest levels on D12 of pregnancy. ALCAM mRNA was localized to the luminal and glandular epithelial cells and to the trophectoderm of conceptuses during early pregnancy. The steroid hormones estrogen and progesterone had no effect on ALCAM expression in an endometrial explant culture study. Further, we found that ALCAM expression in the uterine endometrium from gilts with somatic cell nuclear transfer-derived embryos was not different from that in gilts with embryos from natural mating. ALCAM was expressed in a pregnancy stage- and cell type-specific manner in the uterine endometrium and conceptuses during pregnancy. These findings suggest that ALCAM may play a role in the establishment of pregnancy. Further analysis of ALCAM will provide insight into the implantation process and establishment of pregnancy in pigs.

ALCAM is a Novel Cytoplasmic Membrane Protein in TNF-α Stimulated Invasive Cholangiocarcinoma Cells

  • Adisakwattana, Poom;Suwandittakul, Nantana;Petmitr, Songsak;Wongkham, Sopit;Sangvanich, Polkit;Reamtong, Onrapak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3849-3856
    • /
    • 2015
  • Background: Cholangiocarcinoma (CCA), or bile duct cancer, is incurable with a high mortality rate due to a lack of effective early diagnosis and treatment. Identifying cytoplasmic membrane proteins of invasive CCA that facilitate cancer progression would contribute toward the development of novel tumor markers and effective chemotherapy. Materials and Methods: An invasive CCA cell line (KKU-100) was stimulated using TNF-${\alpha}$ and then biotinylated and purified for mass spectrometry analysis. Novel proteins expressed were selected and their mRNAs expression levels were determined by real-time RT-PCR. In addition, the expression of ALCAM was selected for further observation by Western blot analysis, immunofluorescent imaging, and antibody neutralization assay. Results: After comparing the proteomics profile of TNF-${\alpha}$ induced invasive with non-treated control cells, over-expression of seven novel proteins was observed in the cytoplasmic membrane of TNF-${\alpha}$ stimulated CCA cells. Among these, ALCAM is a novel candidate which showed significant higher mRNA- and protein levels. Immunofluorescent assay also supported that ALCAM was expressed on the cell membrane of the cancer, with increasing intensity associated with TNF-${\alpha}$. Conclusions: This study indicated that ALCAM may be a novel protein candidate expressed on cytoplasmic membranes of invasive CCA cells that could be used as a biomarker for development of diagnosis, prognosis, and drug or antibody-based targeted therapies in the future.

HER-2/neu Protein Expression in Canine Mammary Adenocarcinoma (HER-2/neu 단백질이 개 유방암에서의 발현분석)

  • Yang, Hai-Jie;Do, Sun-Hee;Yuan, Dong-Wei;Hong, Il-Hwa;Ki, Mi-Ran;Park, Jin-Kyu;Goo, Moon-Jung;Lee, Hye-Rim;Hong, Kyung-Sook;Hwang, Ok-Kyung;Han, Jung-Youn;Park, Ho-Yong;Yoo, Sung-Eun;Jeong, Kyu-Shik
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • In this study to evaluate the involvement of EGFR, HER-2/neu and ALCAM (CD166) oncogene products in canine mammary neoplastic lesions, sections of archived paraffin-embedded samples of 49 mammary tumors were analyzed immunohistochemically using antibodies against human EGFR and HER-2/neu and ALCAM. These 49 tumors were divided into 2 groups: 22 benign (19 adenoma, 3 benign mixed tumors) and 27 malignant tumors (2 simple adenocarcinomas, 5 complex adenocarcinomas, 3 solid carcinoma, 5 sclerosing carcinoma, 8 malignant mixed tumors and 4 malignant myoepithelioma). As a result of immunostaining, 31.8% (7/22) of the benign tumors and 29.6% (8/27) of the malignant tumors expressed the HER-2/neu oncogene product, EGFR expression was detected in 27.3% (6/22) of benign tumors and in 22.2% (6/27) of the malignant tumors. ALCAM expression was detected in 40.9% (9/22) of benign tumors and in 7.4% (2/27) of the malignant tumors. These results suggest that some of the biological and morphological characteristics of the tumor are associated with canine mammary gland tumors, as also reported for human breast cancer, the possibility of using anti-HER-2/neu antibodies in the treatment of canine mammary tumors.

CD166 promotes the cancer stem-like properties of primary epithelial ovarian cancer cells

  • Kim, Dae Kyoung;Ham, Min Hee;Lee, Seo Yul;Shin, Min Joo;Kim, Ye Eun;Song, Parkyong;Suh, Dong-Soo;Kim, Jae Ho
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.622-627
    • /
    • 2020
  • Cancer stem cells (CSCs) or tumor-initiating cells are thought to play critical roles in tumorigenesis, metastasis, drug resistance, and tumor recurrence. For the diagnosis and targeted therapy of CSCs, the molecular identity of biomarkers or therapeutic targets for CSCs needs to be clarified. In this study, we identified CD166 as a novel marker expressed in the sphere-forming CSC population of A2780 epithelial ovarian cancer cells and primary ovarian cancer cells. The CD166+ cells isolated from A2780 cells and primary ovarian cancer cells highly expressed CSC markers, including ALDH1a1, OCT4, and SOX2, and ABC transporters, which are implicated in the drug resistance of CSCs. The CD166+ cells exhibited enhanced CSC-like properties, such as increased sphere-forming ability, cell migration and adhesion abilities, resistance to conventional anticancer drugs, and high tumorigenic potential in a xenograft mouse model. Knockdown of CD166 expression in the sphere-forming ovarian CSCs abrogated their CSC-like properties. Moreover, silencing of CD166 expression in the sphere-forming CSCs suppressed the phosphorylation of focal adhesion kinase, paxillin, and SRC. These results suggest that CD166 plays a key role in the regulation of CSC-like properties and focal adhesion kinase signaling in ovarian cancer.

GENE EXPRESSION PATTERNS INDUCED BY $TAXOL^{(R)}$ AND CYCLOSPORIN A IN ORAL SQUAMOUS CELL CARCINOMA CELL LINE USING CDNA MICROARRAY (cDNA Microarray를 이용한 구강편평세포암종 세포주에서 $Taxol^{(R)}$과 Cyclosporin A로 유도된 유전자 발현양상)

  • Kim, Yong-Kwan;Lee, Jae-Hoon;Kim, Chul-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.3
    • /
    • pp.202-212
    • /
    • 2006
  • It is well-known that paclitaxel($Taxol^{(R)}$), which is extracted from the pacific and English yew, has been used as a chemotherapeutic agent for ovarian carcinoma and advanced breast carcinoma and Cyclosporin A, which is highly lipophilic cyclic peptide and isolated from a fungus, has been also used as an useful immunosuppressive drug after transplantation and is associated with cellular apoptosis. Since 1953, in which James Watson, Rosalind Franklin and Francis Crick discovered the double helical structure of DNA, a few kinds of techniques for identifying gene expression have been developed. In postgenomic period, many of researchers have used the DNA microarray which is high throughput screening technique to screen large numbers of gene expression simultaneously. In this study, we searched and screened the gene expression in the oral squamous cell carcinoma cell lines treated with $Taxol^{(R)}$, cyclosporin or cyclosporin combined with $Taxol^{(R)}$ using cDNA microarray. The results were as following; 1. It was useful that the appropriate concentration of Cyclosporin A and $Taxol^{(R)}$ used in oral squamous cell carcinoma cell line was under 1${\mu}g/ml$ and 3${\mu}g/ml$. 2. In the experimental group in which $Taxol^{(R)}$ and $Taxol^{(R)}$ + Cyclosporin A were used, the cell growth was extremely decreased. 3. In the group in which Cyclosporin A was used, the MTT assay was rarely decreased which means the activity of succinyl dehydrogenase is remained in mitochondria but in the group in which the mixture of Cyclosporin A and $Taxol^{(R)}$ were used, the MTT assay was extremely decreased. 4. In the each group in which Cyclosporin A(3 ${\mu}g/ml$) and $Taxol^{(R)}$(1 ${\mu}g/ml$) were used, the cell arrest was appeared in $G_2/M$ phase and in the group in which $Taxol^{(R)}$(3 ${\mu}g/ml$) was used, the cell arrest was appeared in both S phase and $G_2/M$ phase. 5. In the oral squamous cell carcinoma cell line treated with $Taxol^{(R)}$, several genes including ANGPTL4, RALBP1 and TXNRD1, associated with apoptosis, SUI1, MAC30, RRAGA and CTGF, related with cell growth, HUS1 and DUSP5, related with cell cycle and proliferation, ATF4 and CEBPG, associated with transcription factor, BTG1 and VEGF, associated with angiogenesis, FDPS, FCER1G, GPA33 and EPHA4 associated with signal transduction and receptor activity and AKR1C2 and UGTA10 related with carcinogenesis were detected in increased levels. The genes that showed increaced expression in the oral squamous cell carcinoma cell line treated with Cyclosporin A were CYR61, SERPINB2, SSR3 and UPA3A which are known as genes associated with cell growth, carcinogenesis, receptor activity and transcription factor. The genes expressed in the HN22 cell line treated with cyclosporin combined with $taxol^{(R)}$ were ALCAM and GTSE1 associated with cancer invasiveness and cell cycle regulation.