• Title/Summary/Keyword: AITC

Search Result 15, Processing Time 0.026 seconds

Activity of Allyl Isothiocyanate and Its Synergy with Fluconazole against Candida albicans Biofilms

  • Raut, Jayant Shankar;Bansode, Bhagyashree Shridhar;Jadhav, Ashwini Khanderao;Karuppayil, Sankunny Mohan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.685-693
    • /
    • 2017
  • Candidiasis involving the biofilms of Candida albicans is a threat to immunocompromised patients. Candida biofilms are intrinsically resistant to the antifungal drugs and hence novel treatment strategies are desired. The study intended to evaluate the anti-Candida activity of allyl isothiocyanate (AITC) alone and with fluconazole (FLC), particularly against the biofilms. Results revealed the concentration-dependent activity of AITC against the planktonic growth and virulence factors of C. albicans. Significant (p <0.05) inhibition of the biofilms was evident at ${\leq}1mg/ml$ concentrations of AITC. Notably, a combination of 0.004 mg/ml of FLC and 0.125 mg/ml of AITC prevented the biofilm formation. Similarly, the preformed biofilms were significantly (p <0.05) inhibited by the AITC-FLC combination. The fractional inhibitory concentration indices ranging from 0.132 to 0.312 indicated the synergistic activity of AITC and FLC against the biofilm formation and the preformed biofilms. No hemolytic activity at the biofilm inhibitory concentrations of AITC and the AITC-FLC combination suggested the absence of cytotoxic effects. The recognizable synergy between AITC and FLC offers a potential therapeutic strategy against biofilm-associated Candida infections.

Evaluation of Antimicrobial Activity of Allyl Isothiocyanate (AITC) Adsorbed in Oyster Shell on Food-borne Bacteria

  • Han, Jung-Ho;Ahmed, Raju;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • Oyster shells are a waste product from mariculture that creates a major disposal problem in coastal regions of southeast Korea. To make practical use of unused oyster shells, calcined oyster shell (COS) collected from a local company was allowed to adsorb AITC (allyl isothiocyanate), and then tested the powder's ability to inhibit the growth of some potential food borne disease-causing bacteria. COS powder showed bacteriostatic effect that inhibited cell growth of Escherichia coli, Staphylococcus aureus and Salmonella typhimurium from 3 to 5 log10 CFU/mL at concentrations around 1%. The MIC of pure AITC was found as 1 mg/mL, 0.8 mg/mL and 0.7 mg/mL for Escherichia coli, Staphylococcus aureus and Salmonella typhimurium, respectively. The calcined powder adsorbed about 225 mg of AITC per gram of shell, indicating porous material was created by calcination. FTIR data confirmed the adsorption of AITC by COS. Characterization of particle data showed very fine particle size and highly convoluted surface. AITC adsorbed calcined oyster shell (ACOS) completely inhibited bacterial cell at 1% concentration. ACOS showed better antibacterial effect than COS, indicating synergistic effect of AITC and calcined oyster shell powder on bacteria.

Inhibition of Soy Sauce Film Yeasts by Allyl Isothiocyanate and Horse-radish Powder (Allyl Isothiocyanate와 고추냉이분말 첨가에 의한 간장 산막효모의 생육저해 효과)

  • 김영성;경규항;김연순
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.3
    • /
    • pp.263-268
    • /
    • 2000
  • 제품간장에 산막효모가 번식하여 제품의 품질을 제하시키는것을 방지하기 위하여 기존의 합성보존료를 대체할 수 있는 천연물질로서 allyl isothiocyanat (AITC)와 가수분해 되었을때 AITC를 생성하는 sinigrin울 주요 성분으로 함유하고 있는 고추냉이 분말의 효과를 실험하였다.AITC와 고추냉이 분말을 가열처리와 조미를 하지 않은 발표직후의 제균 생간장에 첨가하여 3$0^{\circ}C$에서 30일간 배양하면서 산막효모의 생육저해효과를 실험한 결과 AITC 20ppm과 고추냉이 분말(몇%)를 첨가한 시험구에서 산막효모의 생 이 저해되어 시험기간동안 막이 나타나지 않았다. 고추냉이 분말을 그대로 첨가하거나 간장을 반응액으로 사용한 시험군은ㄹ 고추냉이 분말을 물에 분산시켜 37$^{\circ}C$에서 반응시킨 뒤 간장에 첨가한 때보다 산막효모 저해 효과가 낮았다. 고추냉이를 물과 함께 활성화시켰을때에 비해 훨씬 많은 양의 AITC가 생성되었다. 산막 생성 저해효과 면에서 보았을때, 물로 활성화시켰을때는 간장액에서 활성화시켰을때보다 3배이상의 AITC가 생성된것으로 나타났다.로 나타났다.

  • PDF

Standardization of Processing Conditions of Mustard Powder and Mustard Oil for Quality Improvement (겨자 분말과 겨자유의 품질 향상을 위한 가공조건의 표준화)

  • Son, Moo-Ho;Lee, Ju-Youn
    • Culinary science and hospitality research
    • /
    • v.12 no.4 s.31
    • /
    • pp.131-139
    • /
    • 2006
  • This study carried out the standardization of processing conditions in mustard powder (MP) for quality improvement and suggested a recycling scheme of mustard oil(MO). Pungent taste in MP and MO was estimated using allylisothiocyanate (AITC) content as a marker. Recovery of crude oil from mustard seed (MS) was best by the cold pressing method. Residual AITC content at $30^{\circ}C$ pressing was 0.54% and 0.42% at $230^{\circ}C$. But residual AITC contents in MOs were 92ppm, 139ppm, respectively. The residual AITC content in MP was the highest (0.54%) when the moisture content in MP was 4.5%. The residual content of volatile oil in MP and MO showed similar results. In summary, crude oil must be removed from MS using the cold pressing method.

  • PDF

Influence of Allyl Isothiocyanate on the Soil Microbial Community Structure and Composition during Pepper Cultivation

  • Gao, Jingxia;Pei, Hongxia;Xie, Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.978-989
    • /
    • 2021
  • Allyl isothiocyanate (AITC), as a fumigant, plays an important role in soil control of nematodes, soil-borne pathogens, and weeds, but its effects on soil microorganisms are unclear. In this study, the effects of AITC on microbial diversity and community composition of Capsicum annuum L. soil were investigated through Illumina high-throughput sequencing. The results showed that microbial diversity and community structure were significantly influenced by AITC. AITC reduced the diversity of soil bacteria, stimulated the diversity of the soil fungal community, and significantly changed the structure of fungal community. AITC decreased the relative abundance of dominant bacteria Planctomycetes, Acinetobacter, Pseudodeganella, and RB41, but increased that of Lysobacter, Sphingomonas, Pseudomonas, Luteimonas, Pseudoxanthomonas, and Bacillus at the genera level, while for fungi, Trichoderma, Neurospora, and Lasiodiplodia decreased significantly and Aspergillus, Cladosporium, Fusarium, Penicillium, and Saccharomyces were higher than the control. The correlation analysis suggested cellulase had a significant correlation with fungal operational taxonomic units and there was a significant correlation between cellulase and fungal diversity, while catalase, cellulose, sucrase, and urease were the major contributors in the shift of the community structure. Our results will provide useful information for the use of AITC in the assessment of environmental and ecological security.

The Efficiency and Performance of Porous Film Containing Freshness Maintenance Ingredients (신선도 유지성분을 포함한 다공성 필름의 성능과 효능)

  • Kim, Kyeong-Yee;Lee, Eun-Kyung
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.810-816
    • /
    • 2009
  • To identify effective food packaging compounds that could significantly affect the freshness of stored food, the efficiency and performance of porous polypropylene film containing mustard oil as a freshness maintenance ingredient was studied by GC-MS analysis and storage testing of bread. AITC (allyl-isothiocyanate)-emitting properties of films impregnated with mustard oil were evaluated by GC-MS. AITC was extracted from mustard oil, and used as a vapor as an effective antimicrobial agent. Films were prepared under four different conditions (the film types were abbreviated 25SF1, 25SF2, 50LF, and IAF) and the amounts of AITC inside vinyl packs constructed using the four films were measured. The results showed that the 25SF2 film (width 25 mm, length 20 cm) yielded a greater amount of AITC than did the 50LF film (width 50 mm, length 20 cm). We confirmed that the amount of gas emission showed better between layer and layer of the film side than the internal film. In storage testing using various films at $35^{\circ}C$ for 25 days, 25SF2 film provided excellent preservation of bread compared with 50LF film. This was in line with the fact that 25SF2 film yielded the highest amount of AITC. Emission capacities AITC of 2 cm film were measured using bottles various volumes (43 mL, 500 mL, 1000 mL) and both closed and open systems. The AITC content of the film in 43 mL bottle was much higher than that yielded by other films in the closed system, and AITC was rapidly emitted, with relatively low residual gas emission after 4 days in an open system. Mustard oil is a useful freshness maintenance ingredient hence, analysis of AITC emission kinetics from various films were helpful to develop films with optimal antimicrobial effects, and will allow application of such films in food packaging systems.

Extraction and Identification of Volatile Isothiocyanates from Wasabi using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 고추냉이로부터 휘발성 Isothiocyanates류 추출 및 동정)

  • Kim, Sung-Jin;Lee, Min-Kyung;Back, Sung-Sin;Chun, Byung-Soo
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.174-178
    • /
    • 2007
  • The aim of this study was to identifyisothiocyanates (ITCs) from wasabi (Wasabi japonica Matsum) using supercritical carbon dioxide ($SCO_2$) and to compare the composition in the extracts between $SCO_2$ and organic solvents extraction. A semi-continuous high pressure apparatus was used to extract wasabi (roots, stems and leaves) at following conditions pressure 80$\sim$120 bar, temperature $40\sim50^{\circ}C$. Ether, ethanol, chloroform and dichloromethane were used as organic solvents. The ITCs extracted by means of both separation technologies were analyzed by a gas chromatography system. As the results of study, AITC and ITCs were highly extracted at 40$^{\circ}C$ and 80 bar. To extract AITC from wasabi, $SCO_2$ extraction is more effective than organic solvents extraction, resulted in thermal degeneration and remaining of organic solvents.

AITC induces MRP1 expression by protecting against CS/CSE-mediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis

  • Xu, Lingling;Wu, Jie;Li, Nini;Jiang, Chengjun;Guo, Yan;Cao, Peng;Wang, Dianlei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.481-492
    • /
    • 2020
  • The present study aimed to examine the effect of allyl isothiocyanate (AITC) on chronic obstructive pulmonary disease and to investigate whether upregulation of multidrug resistance-associated protein 1 (MRP1) associated with the activation of the PARK7 (DJ-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis. Lung function indexes and histopathological changes in mice were assessed by lung function detection and H&E staining. The expression levels of Nrf2, MRP1, heme oxygenase-1 (HO-1), and DJ-1 were determined by immunohistochemistry, Western blotting and reverse transcription-quantitative polymerase chain reaction. Next, the expression of DJ-1 in human bronchial epithelial (16HBE) cells was silenced by siRNA, and the effect of DJ-1 expression level on cigarette smoke extract (CSE)-stimulated protein degradation and AITC-induced protein expression was examined. The expression of DJ-1, Nrf2, HO-1, and MRP1 was significantly decreased in the wild type model group, while the expression of each protein was significantly increased after administration of AITC. Silencing the expression of DJ-1 in 16HBE cells accelerated CSE-induced protein degradation, and significantly attenuated the AITC-induced mRNA and protein expression of Nrf2 and MRP1. The present study describes a novel mechanism by which AITC induces MRP1 expression by protecting against CS/CSE-mediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis.

Allyl-isothiocyanate Content and Physiological Responses of Wasabia japonica Matusum as Affected by Different EC Levels in Hydroponics (고추냉이 수경재배시 배양액의 EC 수준이 Allyl-isothiocyanate 함량과 생리적 반응에 미치는 영향)

  • Choi, Ki-Young;Lee, Yong-Beom;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.311-316
    • /
    • 2011
  • This study aimed to determine the effect of EC (electrical conductivity) levels of nutrient solution in hydroponic culture on allyl-isothiocyanate (AITC) content within plant tissues, Vitamin C content and physiological responses in wasabi plant (Wasabia japonica M. 'Darma'). The 'Darma' was grown for 5 weeks with a deep flow technique (DFT) system controlled at 5 different EC levels, including 0.5, 1, 2, 3, and $5dS{\cdot}m^{-1}$. In result, the highest total content of AITC showed at EC level 5 and $3dS{\cdot}m^{-1}$ for 1 or 5- week, respectively. The total content of AITC increased about 1.2-1.4 times when the plants were grown in the EC levels between 0.5 and $2dS{\cdot}m^{-1}$, whereas the content decreased about 6 and 56 % in the EC level 3 and $5dS{\cdot}m^{-1}$, respectively. The content of AITC was relatively higher in petiole tissue, about 53 %, taken from 1 week-grown plants when the EC was controlled between 0.5 and $2dS{\cdot}m^{-1}$. Root tissue also had relatively higher content of AITC, about 45.1 %, when the EC was controlled at 3 and $5dS{\cdot}m^{-1}$. However, a 5-fold decrease in the AITC content was found in blade tissue and a 6.8-fold decrease in root when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. There was no significant difference in the vitamin C content in 1-week grown leaf tissues under the different EC level treatments; but, the content increased about 27% in 5-week grown plants at the EC level between 0.5 and $2dS{\cdot}m^{-1}$, compared to the 1 week-grown leaf tissue. Electrolyte leakage of leaf tissue taken from 3-week grown plant was 3-fold higher at the EC level $5dS{\cdot}m^{-1}$, compared to the EC level between 0.5 and $2dS{\cdot}m^{-1}$. Chlorophyll content, photosynthesis rate and transpiration rate were decreased when the EC was controlled at higher than $2dS{\cdot}m^{-1}$. Leaf water content, specific leaf area and growth were decreased when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. All the integrated results in this study suggest that the EC level of nutrient solution should be maintained at lower than $3dS{\cdot}m^{-1}$ in order to improve nutritional value and quantity required for hydroponically grown wasabi as functional vegetable.

Presence and Control of Coliform Bacteria in Kimchi (김치 발효중 대장균군의 소장과 억제에 관한 연구)

  • Chung, Chang-Ho;Kim, Youn-Soon;Yoo, Yang-Ja;Kyung, Kyu-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.999-1005
    • /
    • 1997
  • The consistant appearance of coliforms in fermenting kimchi was examined and measures of removing coliforms early in the fermentation were investigated. Allyl isothiocyanate $({\geq}50\;ppm)$, horseradish powder $({\geq}0.4%)$, and garlic juice $({\geq}2.0%)$ were effective in removal of coliforms early in kimchi fermentation. However, mustard powder and methyl methanethiosulfonate were not effective. Nisin, known as a promising agent for the prevention of kimchi over-acidification, allowed coliforms to survive in kimchi longer with only marginal extention of edible period. Individual kimchi ingredients such as Chinese cabbage, garlic, red pepper powder, ginger and green onion were all found to contain coliforms. Coliforms were not detected from garlics sold unpeeled and commercially prepared red pepper powder.

  • PDF