• Title/Summary/Keyword: AISI 4140H

Search Result 6, Processing Time 0.024 seconds

A Study on the Residual Stress of AISI 4140 Formed during Surface Hardening Treatment by using the CO2 Laser Beam (CO2레이저 비임을 이용한 표면경화 처리중 형성된 AISI 4140의 잔류응력에 관한 연구)

  • Park, K.W.;Lee, J.B.;Han, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.4
    • /
    • pp.289-299
    • /
    • 1996
  • This study has been performed to investigate into some effects of power density and traverse speed of laser beam on the microstructure, hardness and residual stress of AISI 4140 treated by laser surface hardening technique. Optical micrograph has shown that large martensite and a small amount of retained austenite in outermost surface layer and fine lath martensite in inner surface hardened layer are formed under the condition of a given power density and traverse speed. Hardness measurements have revealed that as the power density increases at a given 2.0m/min of the traverse speed, the maximum hardness values of outermost surface hardened layer is increased from Hv=635 to Hv=670. X-ray analysis for residual stress has exhibited that low compressive residual stress values are obtained in center point of the cress section of surface hardened layer with in mid point between the edge and the center point, about 1.5mm from the center point, due simply to a difference in self-quenching rate. It has been shown that the higher the power density at a given traverse speed and the olwer the traverse speed at a given power density, the more the compressive residual stress values are increased due to an increase in the input heat of laser beam.

  • PDF

Friction Welding Process Analysis of Piston Rod in Marine Diesel Engine and Mechanical Properties of Welded Joint (선박 디젤 엔진용 피스톤 로드의 마찰용접 공정해석 용접부 기계적 특성)

  • Jeong, H.S.;Son, C.W.;Oh, J.S.;Choi, S.K.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.236-242
    • /
    • 2011
  • The two objectives of this study were, first, to determine the optimal friction welding process parameters using finite element simulations and, second, to evaluate the mechanical properties of the friction welded zone for large piston rods in marine diesel engines. Since the diameters of the rod and its connecting part are very different, the manufacturing costs using friction welding are reduced compared to those using the forging process of a single piece. Modeling is a generally accepted method to significantly reduce the number of experimental trials needed when determining the optimal parameters. Therefore, because friction welding depends on many process parameters such as axial force, initial rotational speed and energy, amount of upset and working time, finite element simulations were performed. Then, friction welding experiments were carried out with the optimal process parameter conditions resulting from the simulations. The base material used in this investigation was AISI 4140 with a rod outer diameter of 280 mm and an inner diameter of 160 mm. In this study, various investigation methods, including microstructure characterization, hardness measurements and tensile and fatigue testing, were conducted in order to evaluate the mechanical properties of the friction welded zone.

Study on the Wear Resistant Characteristics of Medium Carbon Alloy Steel Plasma-Nitrided (플라즈마 질화처리된 중탄소합금강의 내마모특성에 관한 연구)

  • Cho, H.S.;Roh, Y.S.;Shin, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.4
    • /
    • pp.215-223
    • /
    • 1992
  • This study has been performed to investigate into some effects of temperature, gas mixing ratio and time on the optical microstructure, hardness and wear characteristics of medium carbon alloy steel treated by plasma nitriding. The results obtained from the experiment are summarized as follows: (1) Optical micrographs of AISI 4140 steel plasma-nitrided by the double stage technique have revealed that the nitrided layer is composed of the compound layer and the diffusion layer. The variation in temperature at the first stage gives effects, on the formation of compound layer and the growth rate is shown to be relatively fast at $460^{\circ}C$. (2) The thickness of compound layer has been found to increase with increasing nitrogen percentage in the gas mixture and the holding time. It is therefore recommended that a shorter holding time and a lower nitrogen percentage are more effective to produce a tougher compound layer and a diffusion layer only. (3) X-ray diffraction analysis for AISI 4140 steel has shown that the compound layer consist of ${\gamma}^{\prime}-Fe_4N$ and ${\alpha}-Fe$ and that tough compound layer diffustion layer only can be obtained by the double stage plasmanitriding process. (4) There is also a tendency that the total hardened layer depth increases with increasing temperature, time and nitrogen percentage in the first stage during the double stage plasma nitriding. (5) The wear resistance of plasma nitrided specimens has been found thobe considerably increased compared to the untreated specimens and the amount of increment has appeared to increase further with increasing nitriding temperature, holding time and notrogen percentage of gas mixture in the first stage treatment.

  • PDF

Effect of Austenitizing Temperature on Mechanical Properties in the Spheroidized Cr-Mo Steel (구상화 열처리한 Cr-Mo강의 오스테나이트화 온도가 기계적 성질에 미치는 영향)

  • Kou, D.H.;Yoon, J.H.;Park, S.J.;Kim, J.M.;Kang, H.J.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.187-192
    • /
    • 2011
  • Effect of austenitizing temperatures on the impact value of the AISI 4140 steel after repetition of spheroidization and cold deep drawing treatment has been studied. Sufficient dissolution of carbide was shown after austenitizing at the high temperature of $950^{\circ}C$. Accordingly, the impact value was remarkably increased by tempering of this high temperature austenitized steel at the tempering temperature ranges between $570^{\circ}C$ and $630^{\circ}C$. On the other hand, remarkable decrease in the impact values and elongations were shown by tempering the low temperature-austenitized ($870^{\circ}C$) steel due to the coarsening of undissolved-carbide existed at the austenitizing temperature.

REACTION STEPS OF A FORMATION OF THE BLACK LAYER BEIWEEN IRON NTIRIDE AND TiN COATING

  • Baek, W.S.;Kwon, S.C.;Lee, J.Y.;Rha, J.J.;Lee, S.R.;Kim, K.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.312-316
    • /
    • 1999
  • The interfacial structure of duplex treated AISI 4140 consisting of iron nitride and TiN layer was characterized by optical microscope, SEM and XRD. A black layer was formed from the decomposition of iron nitride during Ti ion bombardment. The black layer was characterized as an a-Fe phase transformed from the iron nitride by XRD. In order to identify the formation mechanism of the black layer, a thermal analysis of iron nitride undertaken by DSC method. As an iron nitride was mostly consisted of ${\gamma}$'-Fe$_4$N and $\varepsilon$-$Fe_3$N phase after plasma nitriding, in this study, a ${\gamma}$'$-Fe_4$N and $\varepsilon$-$Fe_3$N powders were separately prepared by the different processing conditions of gas nitriding of iron powder in the fluidized bed. From the DSC thermal analysis, the phase transformation of ${\gamma}$'$-Fe_4$N, $\varepsilon$-$Fe_3$N was followed the path of transformation; $ \Upsilon{'}-Fe_4$Nlongrightarrow${\gamma}$-Felongrightarrowa-Fe and of $\varepsilon$-$Fe_3$Nlongrightarrow$\varepsilon$-$Fe_{2.5}$ /N+${\gamma}$'$-Fe_4$Nlongrightarrow${\gamma}$'-Fe$_4$Nlongrightarrow${\gamma}$longrightarrowFelongrightarrowalongrightarrowFe, respectively. It explains the reason why the $\varepsilon$ $-Fe_3$N phase disappeared in the first time and then ${\gamma}$'-Fe$_4$N in the formation of the black layer in the duplex coating.

  • PDF