• Title/Summary/Keyword: AIS Error Correction

Search Result 3, Processing Time 0.014 seconds

Building an Algorithm for Compensating AIS Error Data (AIS 에러 데이터 관리기법에 대한 연구)

  • Kim, Do-Yeon;Hong, Taeho;Jeong, Jung-Sik;Lee, Sang-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.310-315
    • /
    • 2014
  • The domestic maritime environment shows higher frequency of maritime accidents amidst greater traffic volume arising from increasing international seaborne trade and maritime leisure activities. To reduce such maritime accidents, there exist various kinds of safety navigation devices in the ship bridge aimed to mitigate burdens of navigators and support their accurate decision making. Amongst is the AIS considered very important, which is an automatic tracking system to assist understanding of the circumstances in the vicinity by receiving information of other ships and also sending its own; where the information contains errors initially, however, such wrong information is periodically transmitted, accordingly giving rise to hindrance sometimes in decision making by shore operators or ship navigators at sea. This study is to propose the error data and field management algorithm using fuzzy theory toward improving reliability and accuracy in ship related information received from AIS.

A Study On Precision Enhancement Of The Ship's Position By AIS-based DGPS Service (AIS기반 DGPS 서비스에 의한 선박위치정보 정밀도 향상에 관한 연구)

  • Roh, Joung-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.375-378
    • /
    • 2009
  • AIS ship position transmitted from ships has been used position data generated by GPS, whose range of error is approximately 30nm. However, precision enhancement of the ship's position could be possible using DGPS correction information. More precise and accurate AIS ship position could be obtained broadcasting DGNSS Message(AIS Message 17) from ships without high-priced DGPS Beacon Receivers.

  • PDF

Evaluation of the Degenerative Changes of the Distal Intervertebral Discs after Internal Fixation Surgery in Adolescent Idiopathic Scoliosis

  • Dehnokhalaji, Morteza;Golbakhsh, Mohammad Reza;Siavashi, Babak;Talebian, Parham;Javidmehr, Sina;Bozorgmanesh, Mohammadreza
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.1060-1068
    • /
    • 2018
  • Study Design: Retrospective study. Purpose: Lumbar intervertebral disc degeneration is an important cause of low back pain. Overview of Literature: Spinal fusion is often reported to have a good course for adolescent idiopathic scoliosis (AIS). However, many studies have reported that adjacent segment degeneration is accelerated after lumbar spinal fusion. Radiography is a simple method used to evaluate the orientation of the vertebral column. magnetic resonance imaging (MRI) is the method most often used to specifically evaluate intervertebral disc degeneration. The Pfirrmann classification is a well-known method used to evaluate degenerative lumbar disease. After spinal fusion, an increase in stress, excess mobility, increased intra-disc pressure, and posterior displacement of the axis of motion have been observed in the adjacent segments. Methods: we retrospectively secured and analyzed the data of 15 patients (four boys and 11 girls) with AIS who underwent a spinal fusion surgery. We studied the full-length view of the spine (anterior-posterior and lateral) from the X-ray and MRI obtained from all patients before surgery. Postoperatively, another full-length spine X-ray and lumbosacral MRI were obtained from all participants. Then, pelvic tilt, sacral slope, curve correction, and fused and free segments before and after surgery were calculated based on X-ray studies. MRI images were used to estimate the degree to which intervertebral discs were degenerated using Pfirrmann grading system. Pfirrmann grade before and after surgery were compared with Wilcoxon signed rank test. While analyzing the contribution of potential risk factors for the post-spinal fusion Pfirrmann grade of disc degeneration, we used generalized linear models with robust standard error estimates to account for intraclass correlation that may have been present between discs of the same patient. Results: The mean age of the participant was 14 years, and the mean curvature before and after surgery were 67.8 and 23.8, respectively (p<0.05). During the median follow-up of 5 years, the mean degree of the disc degeneration significantly increased in all patients after surgery (p<0.05) with a Pfirrmann grade of 1 and 2.8 in the L2-L3 before and after surgery, respectively. The corresponding figures at L3-L4, L4-L5, and L5-S1 levels were 1.28 and 2.43, 1.07 and 2.35, and 1 and 2.33, respectively. The lower was the number of free discs below the fusion level, the higher was the Pfirrmann grade of degeneration (p<0.001). Conversely, the higher was the number of the discs fused together, the higher was the Pfirrmann grade. Conclusions: we observed that the disc degeneration aggravated after spinal fusion for scoliosis. While the degree of degeneration as measured by Pfirrmann grade was directly correlated by the number of fused segments, it was negatively correlated with the number of discs that remained free below the lowermost level of the fusion.