• Title/Summary/Keyword: AIS 빅데이터

Search Result 15, Processing Time 0.025 seconds

PORT-MIS 선박 입출항 빅데이터를 이용한 항로 통항 특성 분석

  • Kim, Gwang-Il;Jeong, Jung-Sik;Lee, Jin-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.93-95
    • /
    • 2019
  • 일반적으로 항만 내 선박 교통류 평가는 AIS 데이터를 이용하여 수행이 되어져 왔다. AIS 데이터는 선박의 위치 확인에 용이하여 항로상 선박 교통분포 분석에 용이하였다. 하지만, AIS 데이터는 VTS에 저장되어 있는 기간이 짧고, 처리할 데이터의 양이 많은 단점이 있다. 한편, PORT-MIS 선박 입출항 데이터는 10년 이상 저장이 되어 있으며, 통항로상 통계적 선박교통밀도 분석에 활용이 용이하다. 본 연구에서는 PORT-MIS 빅데이터 분석 방법과 선박 입출항 데이터를 항로상의 통항데이터로 변환하는 방법을 개발하여 제시하고자 한다.

  • PDF

입출항 지원 서비스를 위한 AIS 빅데이터 기반 해상교통혼잡도 예측

  • 이서호;김세원;손준배;엄정온;이주향;김동함;윤상웅;김혜진
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.344-346
    • /
    • 2022
  • 최근 자율운항기술개발이 활발하게 이루어짐에 따라 자율운항선 실증이 증가하고 있으며, 또한 자율운항선의 효율적 운용 특히 운항의 안전성을 위해 입출항 시기의 적절성 또한 중요해지고 있다. 이에 해상교통혼잡도를 예측하고자 하였고, AIS 빅데이터를 통해 선박별항적을 분석 및 분류하고자 하였다. 장기적 관점에서 PORT-MIS 선박입출항현황 데이터(호출번호, 입항일시, 출항일시, 전출항지, 차항지, 계선지)를 과거 AIS 빅데이터와 연결시켜 과거 항적 중 가장 가까운 항적을 찾고자 하였다. 그리고 당시 소요 시간을 반영하여 12개의 시간대별로 어느 시점에 어느 위치 구간에 선박들이 놓이게 될지 예측하였고, 특히 입출항 시기의 적절성에 핵심이 되는 13개로 모델링된 영역에 몇 개의 선박들이 항로를 지나는지에 따라 혼잡도(원활, 혼잡, 정체)를 구분하였다. 또한, 본 연구에서는 단기적 관점에서 실제 AIS가 수신된 후에도 유사한 항적을 검사해가며 혼잡도를 예측하고자 하였고, 이러한 장단기적 혼잡도 예측을 통해 미래 자율운항선입출항 지원 서비스의 안전과 그 적절성을 제공하고자 하였다.

  • PDF

AIS 및 해양공간정보 융합 분석을 통한 선박의 주요 통항로 및 통항영역 연구

  • 엄대용;윤은진;이방희
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.325-326
    • /
    • 2022
  • 2020년 AIS 자료와 해양용도구역 정보를 종합해 월별/해역별 주요 선박 통항로를 분석하고 우리나라 연안의 주요 선박 통항로 영역을 유효·비유효 구역으로 구분하여 향후 빅데이터 기반의 통합 항로 예측에 적용하는데 활용하고자 한다. 이 결과를 선박 해양사고정보, 해양에너지, 수산 등의 해양공간계획(MSP) 정보를 추가·분석할 예정이다. 나아가 국가어항을 중심으로 항만별 분석, 화물선·여객선·어선 중심의 선종별 분석 정보로 확대하여 빅데이터 기반의 항로 예측 기술의 입력자료로 활용할 예정이다.

  • PDF

Application Study of Vessel Traffic Service: Dynamic Analysis of AIS for Shocheongcho Ocean Research Station (해상교통관제정보 활용 연구: 빅데이터 기반 해양 공간 선박 활동 특성 해석)

  • Park, Ju-Han;Kim, Seung-Ryong;Yang, Chan-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.206-207
    • /
    • 2019
  • 우리나라에서 해상교통관제시스템(Vessel Traffic Service, VTS) 구역을 설정하여, 관제사를 중심으로 한 VTS와 선박사이의 해상교통상황 등의 교환을 통해 항만의 안전과 항만운영의 효율을 높이고 있다. 향후, 연안으로 확대될 예정이다. 더 넓은 해역에 대해서는 해양안전종합정보시스템(GICOMS)이 있으며, 선박자동식별장치 (AIS), 장거리위치추적시스템 (LRIT) 등에서 송신하는 선박의 운항정보를 수신하여 전자해도에 표시하고 있다. 이와 같은 선박관제정보는 빅데이터로 향후 자동화된 분석과 제원체계가 요구된다. 여기서는 해상교통관제정보 기초 활용 연구로, 소청초 종합해양과학기지주변의 AIS (Automatic Identification System)정보를 사용하여 선박 활동 특성 해석을 진행하였다.

  • PDF

A Study on the Big Data Management of VTS Log (관제 로그의 빅데이터 관리 방안 연구)

  • Kim, Hye-Jin;Oh, Jaeyong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.24-25
    • /
    • 2019
  • 최근 빅데이터 기술 개발로 방대한 데이터의 유의미한 분석 및 예측이 용이해졌다. 선박교통관제센터에서는 각종 센서와 다양한 정보를 기반으로 VHF 교신을 통해 선박교통관제를 수행한다. 관제사가 활용하는 레이더, AIS, Port-MIS. 센서 등의 데이터들이 디지털로 저장되고 있으며, 관제사의 VHF 교신내용은 디지털파일로 저장되어 선박교통관제센터의 서버 2개월간 보관된다. 본 논문에서는 관제 결과로 저장되고 있는 관제 로그 데이터를 활용하여 빅데이터를 구성하고 이를 기반으로 유의미한 정보를 생성할 수 있는 방안을 연구하였다.

  • PDF

Ship Type Prediction using Random Forest with Limited Ship Information (제한적 선박 정보와 무작위의 숲 분류기를 이용한 선종 예측)

  • Ho-Kun Jeon;Jae Rim Han
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.106-107
    • /
    • 2022
  • The ship type identification of the surrounding ship is important information for navigators and VTS officers since they can estimate the maneuverability and near-future route of the ships. However, it is more than frequent that the information is not provided due to transmission trouble and seafarers' unfamiliarity with AIS. Thus, this study suggests predicting ship types through the Random Forest classifier after preparing a training and test dataset that contains ship features and types. The AIS data for Ulsan coast in 2018 was used for this study. The method may provide the effect that many navigators and VTS officers discuss and share the experience of predicting ship types.

  • PDF

A Development of Analysis System for Vessel Traffic Display and Statistics based on Maritime-BigData (해상-빅데이터 기반 선박 항적 표시 및 해상교통량 통계 분석 시스템의 개발)

  • Hwang, Hun-Gyu;Kim, Bae-Sung;Shin, Il-Sik;Song, Sang-Kee;Nam, Gyeung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1195-1202
    • /
    • 2016
  • Recently, a lot of studies that applying the big data technology to various fields, are progressing actively. In the maritime domain, the big data is the meaningful information which makes and gathers by the navigation and communication equipment from the many ships on the ocean. Also, importance of the maritime safety is emphasized, because maritime accidents are rising with increasing of maritime traffic. To support prevention of maritime accidents, in this paper, we developed a vessel traffic display and statistic system based on AIS messages from the many vessels of maritime. Also, to verify the developed system, we conducted tests for vessel track display function and vessel traffic statistic function based on two test scenarios. Therefore, we verified the effectiveness of the developed system for vessel tracks display, abnormal navigation patterns, checking failure of AIS equipments and maritime traffic statistic analyses.

Design and Implementation of Bigdata Platform for Vessel Traffic Service (해상교통 관제 빅데이터 체계의 설계 및 구현)

  • Hye-Jin Kim;Jaeyong Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.887-892
    • /
    • 2023
  • Vessel traffic service(VTS) centers are equipped with RADAR, AIS(Automatic Identification System), weather sensors, and VHF(Very High Frequency). VTS operators use this equipment to observe the movement of ships operating in the VTS area and provide information. The VTS data generated by these various devices is highly valuable for analyzing maritime traffic situation. However, owing to a lack of compatibility between system manufacturers or policy issues, they are often not systematically managed. Therefore, we developed the VTS Bigdata Platform that could efficiently collect, store, and manage control data collected by the VTS, and this paper describes its design and implementation. A microservice architecture was applied to secure operational stability that was one of the important issues in the development of the platform. In addition, the performance of the platform could be improved by dualizing the storage for real-time navigation information. The implemented system was tested using real maritime data to check its performance, identify additional improvements, and consider its feasibility in a real VTS environment.

항로표지 배치 적합도 평가 및 최적배치 서비스 방법론 연구

  • 백인흠;이미라;박준모
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.52-53
    • /
    • 2021
  • 항로표지는 선박이 항로를 안전하게 운항함에 있어서 중요한 역할을 한다. 이 연구에서는 빅데이터 기반으로 AIS 항적분석 모듈, 항로표지 적합성 평가 모듈, 항로표지 배치 검증 모듈 개발을 하고 이를 통합한 항로표지 적합성 평가 및 최적배치 서비스를 개발하고자 한다. 이에 최적배치 서비스 개발을 위한 로드맵과 모듈 개발을 위한 추진 전략 방향성을 구성하였다.

  • PDF

A Study on the Applicability of Safety Performance Indicators using the Density-Based Ship Domain (밀도기반 선박 도메인을 이용한 안전 성능 지표 활용성 연구)

  • Yeong-Jae Han;Sunghyun Sim;Hyerim Bae
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.89-97
    • /
    • 2022
  • Various efforts are needed to prevent accidents because ship collisions can cause various negative situations such as economic losses and casualties. Therefore, research to prevent accidents is being actively conducted, and in this study, new leading indicators for preventing ship collision accidents is proposed. In previous studies, the risk of collision was expressed in consideration of the distance between ships in a specific sea area, but there is a disadvantage that a new model needs to be developed to apply this to other sea areas. In this study, the density-based ship domain DESD (Density-based Empirical Ship Domain) including the environment and operating characteristics of the sea area was defined using AIS (Automatic Identification System) data, which is ship operation information. Deep clustering is applied to two-dimensional DESDs created for each sea area to cluster the seas with similar operating environments. Through the analysis of the relationship between clustered sea areas and ship collision accidents, it was statistically tested that the occurrence of accidents varies by characteristic of each sea area, and it was proved that DESD can be used as a leading indicator of accidents.