• Title/Summary/Keyword: AIS(Automatic Identification System) data

Search Result 100, Processing Time 0.023 seconds

Development of Simulator for AIS Algorithm Verification (AIS 알고리즘 검증용 시뮬레이터 개발)

  • Lee, Hyo-Sung;Lee, Seung-Min;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.478-480
    • /
    • 2005
  • The AIS(Automatic Identification System) transmits the position of ships and other information to prevent accidents which could occur in the sea. It has to be developed SOTDMA(Self-Organized Time Division Multiple Access) Algorithm which is important on wireless communication method for the AIS because It is based on ITU(International Telecommunication Union) M.1371-1 of the international standard therefore, we need to develop a performance evaluation simulator efficiently to develop and analyze SOTDMA Algorithm. This paper shows the method of designing it. Real ships access The VHF maritime mobile band but in this performance evaluation simulator several ship objects access the shared memory. Real ships are designed as the object and the wireless communication channel is designed as the shared memory. The ships apply for real virtual data which got from assistance hardware and The SOTDMA Algorithm driving state verifies the performance evaluation simulator by IEC(International Electrotechnical commission) 61993-2. After verifying results the performance evaluation simulator is correctly satisfied with IEC 61993-2. So we expect that it helps not only the AIS technology developed but also verify new SOTDMA Algorithm.

  • PDF

Design and Implementation of Bigdata Platform for Vessel Traffic Service (해상교통 관제 빅데이터 체계의 설계 및 구현)

  • Hye-Jin Kim;Jaeyong Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.887-892
    • /
    • 2023
  • Vessel traffic service(VTS) centers are equipped with RADAR, AIS(Automatic Identification System), weather sensors, and VHF(Very High Frequency). VTS operators use this equipment to observe the movement of ships operating in the VTS area and provide information. The VTS data generated by these various devices is highly valuable for analyzing maritime traffic situation. However, owing to a lack of compatibility between system manufacturers or policy issues, they are often not systematically managed. Therefore, we developed the VTS Bigdata Platform that could efficiently collect, store, and manage control data collected by the VTS, and this paper describes its design and implementation. A microservice architecture was applied to secure operational stability that was one of the important issues in the development of the platform. In addition, the performance of the platform could be improved by dualizing the storage for real-time navigation information. The implemented system was tested using real maritime data to check its performance, identify additional improvements, and consider its feasibility in a real VTS environment.

A Study on Estimating Ship's Emission in the Port Area of Mokpo Port (목포항 항만구역 내 선박 배기가스 배출량 산정에 대한 연구)

  • Bui, Hai-Dang;Kim, Hwayoung
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.3
    • /
    • pp.47-60
    • /
    • 2023
  • A thorough inventory of ship emissions, particularly ship's emission of in-port area is necessary to identify significant sources of exhaust gases such as NOx, SOx, PM, and CO2 and trends in emission levels over time, and reduce their serious effects on the environment and human health. Therefore, the goal of this study is to assess the volume of emissions from ships in Mokpo port, which serves as a gateway to the southwest coast of Korea, using a bottom-up methodology and data from the automatic identification system (AIS) and the Korean Port Management Information System (Port-MIS). In this work, an analysis of ship movement utilizing AIS data and an actual set of data on ship specification were gathered. By examining ship movement using AIS data, We also proposed a new approach for identifying cruising/maneuvering mode. Finally, the results were classified by ship operating mode, by exhaust gas, by ship type, and by berth, which provides a thorough and in-depth analysis of the air pollution caused by ships in Mokpo port.

Enabling Vessel Collision-Avoidance Expert Systems to Negotiate

  • Hu, Qinyou;Shi, Chaojian;Chen, Haishan;Hu, Qiaoer
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.77-82
    • /
    • 2006
  • Automatic vessel collision-avoidance systems have been studied in the fields of artificial intelligence and navigation for decades. And to facilitate automatic collision-avoidance decision-making in two-vessel-encounter situation, several expert and fuzzy expert systems have been developed. However, none of them can negotiate with each other as seafarers usually do when they intend to make a more economic overall plan of collision avoidance in the COLREGS-COST-HIGH situations where collision avoidance following the International Regulations for Preventing Collisions at Sea(COLREGS) costs too much. Automatic Identification System(AIS) makes data communication between two vessels possible, and negotiation methods can be used to optimize vessel collision avoidance. In this paper, a negotiation framework is put forward to enable vessels to negotiate to optimize collision avoidance in the COLREGS-COST-HIGH situations at open sea. A vessel vector space is defined and therewith a cost model is put forward to evaluate the cost of collision-avoidance actions. Negotiations between a give-way vessel and a stand-on vessel and between two give-way vessels are considered respectively to reach overall low cost agreements. With the framework proposed in this paper, two vessels involved in a COLREGS-COST-HIGH situation can negotiate with each other to get a more economic overall plan of collision avoidance than that suggested by the traditional collision-avoidance expert systems.

  • PDF

Verification of VIIRS Data using AIS data and automatic extraction of nigth lights (AIS 자료를 이용한 VIIRS 데이터의 야간 불빛 자동 추출 및 검증)

  • Suk Yoon;Hyeong-Tak Lee;Hey-Min Choi;;Jeong-Seok Lee;Hee-Jeong Han;Hyun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.104-105
    • /
    • 2023
  • 해양 관측과 위성 원격탐사를 이용하여 시공간적으로 다양하게 변하는 생태 어장 환경 및 선박 관련 자료를 획득할 수 있다. 이번 연구의 주요 목적은 야간 불빛 위성 자료를 이용하여 광범위한 해역에 대한 어선의 위치 분포를 파악하는 딥러닝 기반 모델을 제안하는 것이다. 제안한 모델의 정확성을 평가하기 위해 야간 조업 어선의 위치를 포함하고 있는 AIS(Automatic Identification System) 정보와 상호 비교 평가 하였다. 이를 위해, 먼저 AIS 자료를 획득 및 분석하는 방법을 소개한다. 해양안전종합시스템(General Information Center on Maritime Safety & Security, GICOMS)으로부터 제공받은 AIS 자료는 동적정보와 정적정보로 나뉜다. 동적 정보는 일별 자료로 구분되어있으며, 이 정보에는 해상이동업무식별번호(Maritime Mobile Service Identity, MMSI), 선박의 시간, 위도, 경도, 속력(Speed over Ground, SOG), 실침로(Course over Ground, COG), 선수방향(Heading) 등이 포함되어 있다. 정적정보는 1개의 파일로 구성되어 있으며, 선박명, 선종 코드, IMO Number, 호출부호, 제원(DimA, DimB, DimC, Dim D), 홀수, 추정 톤수 등이 포함되어 있다. 이번 연구에서는 선박의 정보에서 어선의 정보를 추출하여 비교 자료로 사용하였으며, 위성 자료는 구름의 영향이 없는 깨끗한 날짜의 영상 자료를 선별하여 사용하였다. 야간 불빛 위성 자료, 구름 정보 등을 이용하여 야간 조업 어선의 불빛을 감지하는 심층신경망(Deep Neural Network; DNN) 기반 모델을 제안하였다. 본 연구의결과는 야간 어선의 분포를 감시하고 한반도 인근 어장을 보호하는데 기여할 것으로 기대된다.

  • PDF

Block-based Self-organizing TDMA for Reliable VDES in SANETs

  • Sol-Bee Lee;Jung-Hyok Kwon;Bu-Young Kim;Woo-Seong Shim;Dongwan Kim;Eui-Jik Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.511-527
    • /
    • 2024
  • This paper proposes a block-based self-organizing time-division multiple access (BSO-TDMA) protocol for very high frequency (VHF) data exchange system (VDES) in shipborne ad-hoc networks (SANETs). The BSO-TDMA reduces the collisions caused by the simultaneous transmission of automatic identification system (AIS) messages by uniformly allocating channel resources using a block-wise frame. For this purpose, the BSO-TDMA includes two functional operations: (1) frame configuration and (2) slot allocation. The first operation consists of block division and block selection. A frame is divided into multiple blocks, each consisting of fixed-size subblocks, by using the reporting interval (RI) of the ship. Then, the ship selects one of the subblocks within a block by considering the number of occupied slots for each subblock. The second operation allocates the slots within the selected subblock for transmitting AIS messages. First, one of the unoccupied slots within the selected subblock is allocated for the periodic transmission of position reports. Next, to transmit various types of AIS messages, an unoccupied slot is randomly selected from candidate slots located around the previously allocated slot. Experimental simulations are conducted to evaluate the performance of BSO-TDMA. The results show that BSO-TDMA has better performance than that of the existing SOTDMA.

A Study on a Shipborne Automatic Identification System

  • Wen -Li Sun;Fu-Wen Pang;Sang-Ku Hwang;Tchang-Hee Hong
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.2
    • /
    • pp.13-22
    • /
    • 1998
  • Shipbome Automatic Identification System (AIS) will be an important manne equipment used for identification, surveillance and communication in the 21st century, which is currently being researched in developed countries. A technical scheme of AlS is proposed in this paper. The main component of the AlS is a broadcast transponder, and the core technology is a VHF radio data link with high capacity, named STDMA (Self-organized Time Division Multiple Access). The ships installed the AlS, which will automatically and periodically broadcast their positions and identities in the marine VHF channels, can be displayed on a screen of an ECDIS on board or in VTS centers. The AlS is able to support not only broadcast service but also point-to-point communication service. This paper presents the configuration, operation principle and functionality of the AlS as well as the scenario of STDMA. In addition, the standardization work of AlS in IMO is introduced in this pauer, too.

  • PDF

Improving Assessments of Maritime Traffic Congestion Based On Occupancy Area Density Analysis for Traffic Vessels (통항선박의 점용영역 밀집도 분석을 통한 해상교통혼잡도 평가 개선에 관한 연구)

  • Kim, Soung-Tae;Rhee, Hahn-Kyou;Gong, In-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2017
  • It may be reasonable to consider density per unit area over time rather than analyze traffic volume, which is simply the traffic volume per unit of time, in assessing the maritime traffic congestion of a certain area. This study contributes to the standardization of maritime traffic congestion assessment methods for the maritime traffic safety diagnosis institute while seeking a new method to minimize evaluation error due to converted traffic volume per ship tonnage level. To solve this problem, a method to evaluate maritime traffic congestion by comparing the area occupied by a vessel with the area of its route using vessel identification data from the Automatic Identification System (AIS) has been proposed. In this new model, it is possible to use actual data due to the development of information and communication technology, reducing conversion error while allowing for the evaluation of maritime traffic congestion by route.

A Study on the Applicability of Safety Performance Indicators using the Density-Based Ship Domain (밀도기반 선박 도메인을 이용한 안전 성능 지표 활용성 연구)

  • Yeong-Jae Han;Sunghyun Sim;Hyerim Bae
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.89-97
    • /
    • 2022
  • Various efforts are needed to prevent accidents because ship collisions can cause various negative situations such as economic losses and casualties. Therefore, research to prevent accidents is being actively conducted, and in this study, new leading indicators for preventing ship collision accidents is proposed. In previous studies, the risk of collision was expressed in consideration of the distance between ships in a specific sea area, but there is a disadvantage that a new model needs to be developed to apply this to other sea areas. In this study, the density-based ship domain DESD (Density-based Empirical Ship Domain) including the environment and operating characteristics of the sea area was defined using AIS (Automatic Identification System) data, which is ship operation information. Deep clustering is applied to two-dimensional DESDs created for each sea area to cluster the seas with similar operating environments. Through the analysis of the relationship between clustered sea areas and ship collision accidents, it was statistically tested that the occurrence of accidents varies by characteristic of each sea area, and it was proved that DESD can be used as a leading indicator of accidents.

Efficiency Evaluation of a Hybrid Propulsion Fuel Cell Ship Based on AIS Data (항적 데이터에 기반한 하이브리드 추진 연료전지 선박의 효율 평가)

  • Donghyun Oh;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.146-154
    • /
    • 2023
  • Efforts have been made to reduce the greenhouse gas emissions from ships by limiting the energy efficiency index, and net zero CO2 emission was proposed recently. The most ideal measure to achieve zero emission ship is electrification, and fuel cells are considered as a practical power source of the electrified propulsion system. The electric efficiency in the electrochemical reaction of fuel cells can be achieved up to 60% practically. The remaining energy is converted to heat energy but most of them are dissipated by cooling. In the author's previous research, a hybrid propulsion system utilizing not only electricity but also heat was introduced by combining electric motor and steam turbine. In this article, long term efficiency is evaluated for the introduced hybrid propulsion system by considering a virtual 24,000 TEU class container carrier model. To reflect a more practical operating condition, the actual navigation data of a similar real ship in the real world were collected from automatic identification system data and applied. From the result, the overall efficiency of the hybrid propulsion system is expected to be higher than a conventional electric propulsion fuel cell ship by 30%.