• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.04 seconds

East Hartley Transform Technique as a Efficient Tools for Gravity Field Modelling (중력장 모델링을 위한 고속 Hartley 변환기법의 적용)

  • Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.17-26
    • /
    • 1998
  • This paper deals with gravimetric geoid determination by Fast Hartely transform (FHT) technique in and around the Korean peninsula. A number of data files were compiled for this work, containing now more than 69, 001 point gravity data on land and ocean areas. Especially, regression was applied to estimate gravity anomalies in the northern area of peninsula. For evaluating accuracy of geoid obtained, GPS/Leveling data of 49 stations were prepared. EGM96 global geopotential model to degree 360 was used in order to determine the long wavelength effect of geoid undulations. By applying the remove-restore technique geoid undulations were determined by combining a geopotential model, free-air gravity anomalies. Fast Hartley Transform technique is a suitable solution that uses the advanced spectral technique on the sphere. It was applied to predict geoid undulations by Stokes's integral. Accuracy of geoid undulations was evaluated by comparing with results derived from GPS/Leveling. Standard deviation of differences is about 33 cm.

  • PDF

Development of a CFD Model to Study Ventilation Efficiency of Mechanically Ventilated Pig House (강제환기식 돈사의 환기 효율성 분석을 위한 CFD 모델 개발)

  • Seo, Il-Hwan;Lee, In-Bok;Hong, Se-Woon;Hwang, Hyun-Seob;Bitog, Jessie Pascul;Yoo, Jae-In;Kwon, Kyung-Suk;Ha, Tae-Hwan;Kim, Hyeon-Tae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.25-37
    • /
    • 2008
  • When livestock facilities in Korea have been changed larger and denser, rearing conditions have been getting worse and the productivity of animal production have been decreased. Especially in the cold season, the minimized ventilation has generally been operated to save energy cost in Korea resulting in very poor environmental condition and high mortality. While the stability, suitability, and uniformity of the rearing condition are the most important for high productivity, the ventilation configuration is the most important to improve the rearing condition seasonally. But, it is so difficult to analyze the internal air flow and the environmental factors by conducting only field experiment because the weather condition is very unpredictable and unstable as well as the structural specification can not be easily changed by the researchers considering cost and labor. Accordingly, an aerodynamic computer simulation was adopted to this study to overcome the weakness of conducting field experiment and study the aerodynamic itself. It has been supposed that the airflow is the main mechanism of heat, mass, and momentum transfers. To make the simulation model accurately and actually, simplified pig models were also developed. The accuracy of the CFD simulation model was enhanced by 4.4 % of errors compared with the data collected from field experiments. In this paper, using the verified CFD model, the CFD computed internal rearing condition of the mechanically ventilated pig house were analyzed quantitatively as well as qualitatively. Later, this developed model will be computed time-dependently to effectively analyze the seasonal ventilation efficiency more practically and extensively with tracer gas decay theory.

DSM Generation and Accuracy Analysis from UAV Images on River-side Facilities (UAV 영상을 활용한 수변구조물의 DSM 생성 및 정확도 분석)

  • Rhee, Sooahm;Kim, Taejung;Kim, Jaein;Kim, Min Chul;Chang, Hwi Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.183-191
    • /
    • 2015
  • If the damage analysis on river-side facilities such as dam, river bank structures and bridges caused by disasters such as typhoon, flood, etc. becomes available, it can be a great help for disaster recovery and decision-making. In this research, We tried to extract a Digital Surface Model (DSM) and analyze the accuracy from Unmanned Air Vehicle (UAV) images on river-side facilities. We tried to apply stereo image-based matching technique, then extracted match results were united with one mosaic DSM. The accuracy was verified compared with a DSM derived from LIDAR data. Overall accuracy was around 3m of absolute and root mean square error. As an analysis result, we confirmed that exterior orientation parameters exerted an influence to DSM accuracy. For more accurate DSM generation, accurate EO parameters are necessary and effective interpolation and post process technique needs to be developed. And the damage analysis simulation with DSM has to be performed in the future.

Nonlinear Flutter Analysis of Missile Fin considering Dynamic Stiffness of Actuator (구동장치의 동강성을 고려한 미사일 조종날개의 비선형 플러터 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In;Han, Jae-Hung;Shin, Young-Suk;Lee, Yeol-Wha
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.54-59
    • /
    • 2005
  • Nonlinear aeroelastic analyses of a missile control fin are performed considering backlash and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces, and aerodynamic forces are approximated by the minimum-state approximation. For nonlinear flutter analysis backlash is represented by a free-play and is linearized by using the describing function method. Also, dynamic stiffness is function of frequency and is calculated by solving equation of motion for actuator. The linear and nonlinear flutter analyses show that the aeroelastic characteristics are significantly dependent on the backlash and dynamic stiffness. From the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below the linear divergent flutter boundary. The nonlinear flutter characteristics and the nonlinear aeroelastic responses are also investigated in the time domain.

Procedure of Barometer Setting in Flight with On-board Navigation Data alone (자체 항법 정보만을 이용한 비행 중 기압 고도계 설정 방법)

  • Jung, Suk-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.300-308
    • /
    • 2012
  • In GPS/INS/barometer navigation system for UAV, two procedures were proposed in order to set three reference parameters for the pressure altitude of QNH or QFE settings, using the navigation data from on-board system alone. These procedures yield required the reference parameters through mathematical process with the altitude and the atmosphere properties measured for a short duration of flight, of which a special pattern is requested according to the selected procedure. Dependency only upon the on-board navigation data can eliminate a requirement for the atmospheric measurement system in the ground support system and can expand a flight boundary to a remote area where the ground support is not available. Especially the procedure with the regression method uses altitude and pressure but temperature to produce the three reference parameters. No need of temperature measurement for the pressure altitude system can simplify the on-board air data system.

Code Generation from the Statechart Based on XMI (XMI 기반 상태도의 소스코드 자동생성 엔진 구현)

  • Lim, Joa-Sang;Kim, Jin-Man
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.161-170
    • /
    • 2011
  • Despite some practical confusion over the variations in the diagram which may be drawn differently depending upon the CASE, the statechart of UML has been widely used to show the dynamic behaviour of the systems. Prior research has employed either simple switch-case statement or the state design pattern to generate source code from the statechart, which may result in varying source codes. This paper made an attempt to formally define the statechart and generate source codes from it. Firstly we cleaned up the XMI which was generated from different CASEs. This XMI has been translated to the EHA to identify automata contained in it. Then the elements of the statechart metamodel were mapped to the java programs. We also verified the quality of source codes by measuring functionality and maintainability. The case employed in this study was the air conditioner. The reason was that the case includes various states and transitions of interest. It was found that XMI was well extracted by removing some legacy codes in the CASE and the source codes were then successfully generated with the concurrency and hierarchy of the statechart. Further research is required to validate it practical significance with a larger case.

UAV LRU Layout Optimizing Using Genetic Algorithm (유전알고리즘을 이용한 무인항공기 장비 배치 최적 설계)

  • Back, Sunwoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.621-629
    • /
    • 2020
  • LRU layout is a complex problem that requires consideration of various criteria such as airworthiness, performance, maintainability and environmental requirements. As aircraft functions become more complex, the necessary equipment is increasing, and unmanned aerial vehicles are equipped with more equipment as a substitute for pilots. Due to the complexity of the problem, the increase in the number of equipment, and the limited development period, the placement of equipment is largely dependent on the engineer's insight and experience. For optimization, quantitative criteria are required for evaluation, but criteria such as safety, performance, and maintainability are difficult to quantitatively compare or have limitations. In this study, we consider the installation and maintenance of the equipment, simplify the deployment model to the traveling salesman problem, Optimization was performed using a genetic algorithm to minimize the weight of the connecting cable between the equipment. When the optimization results were compared with the global calculations, the same results were obtained with less time required, and the improvement was compared with the heuristic.

Numerical Study on the Characteristics of Combustion and Emission in Pulverized Coal-fired Boiler for Using High Moisture Coal and Dry Coal (석탄화력보일러에서 고수분탄 및 건조석탄 사용에 따른 연소 및 배기배출 특성에 대한 전산해석 연구)

  • Ahn, Seok-Gi;Kim, Kang-Min;Kim, Gyu-Bo;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.118-126
    • /
    • 2017
  • This study was performed to investigate the characteristics of combustion and emissions in pulverized coal fired boiler for using high moisture coal and dry coal through computational fluid dynamics(CFD). We validated this boiler model with performance data of the boiler. The results of flow characteristics showed that climbing speed of gases was increased as blending ratio of high moisture coal was increased. It can decrease a residence time of fuel in the furnace. And it influence coal combustion. The coal burnout and NOx generation in burner level were decreased as increasing blending ratio of high moisture coal. The gas temperature and NOx formation were increased after OFA level due to coal burnout delay.

Development of the Global-Korean Aviation Turbulence Guidance (Global-KTG) System Using the Global Data Assimilation and Prediction System (GDAPS) of the Korea Meteorological Administration (KMA) (기상청 전지구 수치예보모델을 이용한 전지구 한국형 항공난류 예측시스템(G-KTG) 개발)

  • Lee, Dan-Bi;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.223-232
    • /
    • 2018
  • The Global-Korean aviation Turbulence Guidance (G-KTG) system is developed using the operational Global Data Assimilation and Prediction System of Korea Meteorological Administration with 17-km horizontal grid spacing. The G-KTG system provides an integrated solution of various clear-air turbulence (CAT) diagnostics and mountain-wave induced turbulence (MWT) diagnostics for low [below 10 kft (3.05 km)], middle [10 kft (3.05 km) - 20 kft (6.10 km)], and upper [20 kft (6.10 km) - 50 kft (15.24 km)] levels. Individual CAT and MWT diagnostics in the G-KTG are converted to a 1/3 power of energy dissipation rate (EDR). 12-h forecast of the G-KTG is evaluated using 6-month period (2016.06~2016.11) of in-situ EDR observation data. The forecast skill is calculated by area under curve (AUC) where the curve is drawn by pairs of probabilities of detection of "yes" for moderate-or-greater-level turbulence events and "no" for null-level turbulence events. The AUCs of G-KTG for the upper, middle, and lower levels are 0.79, 0.69, and 0.63, respectively. Comparison of the upper-level G-KTG with the regional-KTG in East Asia reveals that the forecast skill of the G-KTG (AUC = 0.77) is similar to that of the regional-KTG (AUC = 0.79) using the Regional Data Assimilation and Prediction System with 12-km horizontal grid spacing.

Development of statistical forecast model for PM10 concentration over Seoul (서울지역 PM10 농도 예측모형 개발)

  • Sohn, Keon Tae;Kim, Dahong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.289-299
    • /
    • 2015
  • The objective of the present study is to develop statistical quantitative forecast model for PM10 concentration over Seoul. We used three types of data (weather observation data in Korea, the China's weather observation data collected by GTS, and air quality numerical model forecasts). To apply the daily forecast system, hourly data are converted to daily data and then lagging was performed. The potential predictors were selected based on correlation analysis and multicollinearity check. Model validation has been performed for checking model stability. We applied two models (multiple regression model and threshold regression model) separately. The two models were compared based on the scatter plot of forecasts and observations, time series plots, RMSE, skill scores. As a result, a threshold regression model performs better than multiple regression model in high PM10 concentration cases.