• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.031 seconds

An Optimization of Air-Lubricated Slider Bearings by Using Reduced Basis Concept (축소기초모델개념을 이용한 공기윤활 슬라이더 베어링의 최적설계)

  • 김동인;윤상준;강태식;정태건;최동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.52-57
    • /
    • 2001
  • In this paper, the optimum designs of air-bearing surface(ABS) are achieved effectively by using reduced basis concept which can reduce the number of design variables although the design space is distended. Generally, the optimization method is more effective than the trial and error. However, the efficiency of the former is largely dependent on the number of the design variables. In order to reduce the number of design variables and increase the efficiency, reduced basis concept is applied. We can define the desired design as a linear combination of basis designs using this concept. From this optimization method with reduced basis concept, we easily obtain the optimum designs of ABS whose target flying heights are 25, 20, 15 nm.

  • PDF

A Study on the Improvement of Air-Fuel Ratio Control Performance in Sl Engine Using STR (STR을 이용한 가솔린 엔진의 공연비 제어 성능 향상에 관한 연구)

  • 신규철;박승범;윤팔주;정남훈;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.57-64
    • /
    • 2001
  • This study presents an self tuning regulator(STR) to improve the air-fuel ratio control of performance of gasoline engine. The STR is designed based on the nonlinear dynamic engine model, and the performance of the STR is evaluated through the simulation and experiments. The STR shows better performance than a conventional PI controller in terms of the response time and disturbance rejection. Since the STR has less calculation load than the complex nonlinear controller, this algorithm can be easily applied to on-board engine controller.

  • PDF

Shock and vibration analysis of a tractor-trailer type vehicle system with air suspension (공기 현가 장치를 장착한 트랙터-트레일러형 차량 시스템의 충격진동 해석)

  • 김종길;하태완
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.15-22
    • /
    • 2000
  • Shock and vibration characteristics of a tractor-trailer type vehicle system with air suspension and air coupler running on a single bump road are investigated. The vehicle system is modelled and solved to two types of models, i.e. rigid-multi-body and flexible-multi-body model, by ADAMS and NASTRAN software. And the shock impulse is given by a single bump model on the road. When the analysis results of the rigid-multi-body model is compared with those of the flexible-multi-body model, it is revealed that the vibration and accelerations of the latter model are more repetitive and larger than the former.

  • PDF

Modeling of Stochastic Properties of Internal Heat Generation of an Office Building for Slab Cooling Storage (사무소건물의 슬래브축냉을 위한 내부발열부하의 확률적 성상 모델화)

  • Jung, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.836-842
    • /
    • 2011
  • It has been shown that the air-conditioning system with slab cooling storage is effective in cutting peak load and utilizing nighttime electric power. The stochastic properties of internal heat generation which has great influence on the cooling load are examined in this paper. Based on the measured cooling load and electric power consumption in an office building with slab cooling storage, stochastic time series models to simulate these random processes are investigated. Furthermore, a calculated result by an optimal control method of thermal analysis taking into account the internal heat is compared with the measured cooling load.

Dynamic modeling of supersonic engine for control law design considering the air disturbance (비행중 대기 외란을 고려한 초음속 엔진 제어용 모델링 기법 연구)

  • Park, Ik-Soo;Park, Jung-Woo;Tahk, Min-Jea;Kim, Sun-Kyeong;Kim, Sung-Jin;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.546-549
    • /
    • 2009
  • Dynamic model for supersonic engine is proposed to design control law. The model structure is constructed to capture the local characteristics of supersonic and subsonic flow by using conservation equations. To evaluate the stability of control law under the disturbances, the air turbulence model is incorporated with the engine model. The combined model shows analogous results compared to performance analysis model which is good coincidence with CFD results and disturbance effects.

  • PDF

Flashover Characteristics of Vertical-type Model Power Line in the Presence of Combustion Flame (연소화염 존재 시 수직형 모델 전력선의 섬락 특성)

  • Kim, In-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.58-65
    • /
    • 2009
  • A forest fire in the area of power line installations may be caused by flashover disturbances in power systems. In this study, experiments were conducted so as to investigate the reduction in dielectric strength caused by combustion flame, and flashover characteristics in the simulated condition of vertical-type model power lines were examined by making shorter and longer the horizontal distance(s) between combustion flame and high-voltage conductors under the application of 60[Hz] a.c. and d.c. high-voltages. As the results of the experimental investigation it is demonstrated that flame can reduce flashover voltages of the model air-gap in shorter range of the horizontal distance(s). Relative air density is considered in order to analyze the reduction causes of the flashover voltages, and it can be seen that the relative air density has a great influence on the flashover characteristics under the presence of combustion flame.

Blast Analysis of Concrete Structure using Arbitrary Lagrangian-Eulerian Technique (Arbitrary Lagrangian-Eulerian기법을 적용한 콘크리트 구조물의 폭발해석)

  • Yi, Na-Hyun;Kim, Sung-Bae;Nam, Jin-Won;Lee, Sung-Tae;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.269-272
    • /
    • 2008
  • Blast load, an impulsive load with extremely short time duration with very high pressure, is effected by ground and air condition, weight of charge, shape and location of structure. In this study, a blast dynamic analysis for the air-structural integrated model considering dynamic properties of materials and simulation of complex blast wave propagation by Arbitrary Lagrangian- Eulerian technique is suggested to perform an accurate blast analysis of concrete structures. For the verification of the proposed blast analysis method, which is the air-structure integrated model using ALE technique, the comparison of analysis and experimental results is performed. The verification confirms that the simulation of realistic behavior of RC wall structures is possible using ALE method. Also, the example cases which have been analyzed using this method show that the estimation to the structural failure criterion for blast load failure can be represented by energy absorbtion procedure.

  • PDF

The Impact of Ventilation Strategies on Indoor Air Pollution: A Comparative Study of HVAC Systems Using a Numerical Model (실내오염물질의 환기기술전략에 따른 영향평가 : 수치적 모델을 이용한 HVAC 시스템의 비교연구)

  • Park, Sung-Woo;Song, Dong-Woong;D.J. Moschandreas
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.E
    • /
    • pp.45-54
    • /
    • 1995
  • Indoor air quality models are useful to predict indoor air pollutant concentrations as a function of several indoor factors. Indoor air quality model was developed to evaluate the pollutant removal efficiency of variable-air-volume/bypass filtration system (VAV/BPFS) compared with the conventional variable-air-volume (VAV) system. This model provides relative pollutant removal effectiveness of VAV/BPFS by concentration ratio between the conventional VAV system and VAV/BPFS. The predictions agree closely, from 5 to 10 percent, with the measured values for each energy load. As a results, we recommend the VAV/BPFS is a promising alternative to conventional VAV system because it is capable of reducing indoor air pollutant concentration and maintaining good indoor air quality.

  • PDF

Control of the Absorption Air Conditioning System by Using Steepest Descent Method (최속 강하법을 이용한 흡수식 냉동공조시스템 제어)

  • Han, Do-Young;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.495-501
    • /
    • 2003
  • Control algorithms for the absorption air conditioning system may be developed by using dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help to develop effective control algorithms for the system. In this study, control algorithms for an absorption air conditioning system were developed by using a dynamic simulation program. A cooling water inlet temperature control algorithm, a chilled water outlet temperature control algorithm, and a supply air temperature control algorithm, were developed and analyzed. The steepest descent method was used as an optimal algorithm. The simulation results showed energy savings and the effective controls of an absorption air conditioning system.

Performance Test and Finite Element Analysis of Air Spring for Automobile (승용차용 에어스프링의 유한요소해석 및 성능시험)

  • Huh, Shin;Woo, Chang-Soo;Han, Houk-Seop;Kim, Wan-Doo;Kim, Seong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.725-731
    • /
    • 2007
  • An air spring which is a part of the suspension system of automobiles is used to reduce and absorb the vibration and the noise. Main components of the air spring are a cord reinforced rubber bellows, a canister and a piston. The performance of the air spring are depended on configurations of rubber bellows, the angle and elastic modulus of cord. The finite element analysis are executed to predict and evaluate the load capacity and the stiffness. The design variables of air spring are determined to adjust the required specifications of the air spring. Several samples of the air spring are manufactured and experimented. It is shown that the results by finite element analysis are in close agreement with the test results.