• Title/Summary/Keyword: AIHS

Search Result 2, Processing Time 0.015 seconds

Comparative Analysis of Image Fusion Methods According to Spectral Responses of High-Resolution Optical Sensors (고해상 광학센서의 스펙트럼 응답에 따른 영상융합 기법 비교분석)

  • Lee, Ha-Seong;Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.227-239
    • /
    • 2014
  • This study aims to evaluate performance of various image fusion methods based on the spectral responses of high-resolution optical satellite sensors such as KOMPSAT-2, QuickBird and WorldView-2. The image fusion methods used in this study are GIHS, GIHSA, GS1 and AIHS. A quality evaluation of each image fusion method was performed with both quantitative and visual analysis. The quantitative analysis was carried out using spectral angle mapper index (SAM), relative global dimensional error (spectral ERGAS) and image quality index (Q4). The results indicates that the GIHSA method is slightly better than other methods for KOMPSAT-2 images. On the other hand, the GS1 method is suitable for Quickbird and WorldView-2 images.

Buckling load optimization of beam reinforced by nanoparticles

  • Motezaker, Mohsen;Eyvazian, Arameh
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.481-486
    • /
    • 2020
  • This paper deals with the buckling and optimization of a nanocomposite beam. The agglomeration of nanoparticles was assumed by Mori-Tanaka model. The harmony search optimization algorithm is adaptively improved using two adjusted processes based on dynamic parameters. The governing equations were derived by Timoshenko beam model by energy method. The optimum conditions of the nanocomposite beam- based proposed AIHS are compared with several existing harmony search algorithms. Applying DQ and Hs methods, the optimum values of radius and FS were obtained. The effects of thickness, agglomeration, volume percent of CNTs and boundary conditions were assumed. The results show that with increasing the volume percent of CNTs, the optimum radius of the beam decreases while the FS was improved.