• Title/Summary/Keyword: AICF

Search Result 4, Processing Time 0.016 seconds

Design of a Cascade Adaptive Filter for the Removal of Baseline Drift (기저선 변동 제거를 위한 종속 적응필터의 설계)

  • Park, Kwang-Li;Lee, Se-Jin;Lee, Kyoung-Joung;Yoon, Hyung-Ro
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.101-104
    • /
    • 1995
  • In this paper, we designed a cascade adaptive filter for elimination of the baseline drift and the distortion of the filtered signal. The cascade adaptive filter(CAF) consists of two filters. The first adaptive filter which has the cutoff frequency of 0.3Hz eliminate the noisy signal. The second adaptive filter remove the remnant baseline drift which is not eliminated by the first adaptive filter. Comparing the performance of the CAF with standard filter, recursive notch filter(RNF) and a adaptive impulse correlated filter(AICF), the CAF showed a higher performance in removal of the baseline drift than standard filler, and RNF. Also, considering the distortion of filtered signal, CAF is better than AICF and is comparable to the standard filter.

  • PDF

Design of a Cascade Adaptive Filter for the Performance sn Detection of Segment (ST세그먼트 검출성능향상을 종속 적응필터의 세계)

  • 박광리;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.517-524
    • /
    • 1995
  • This paper is a study on the design of the cascade adaptive filter (CAF) for baseline wandering elimination in order to enhance the performance of the detection of ST segments in ECG. The CAF using Least Mean Square (LMS) algorithm consists of two filters. The primary adaptive filter which has the cutoff frequency of 0.3Hz eliminates the baseline wandering in raw ECG The secondary adaptive filter removes the remnant baseline wandering which is not eliminated by the primary adaptive filter. The performance of the CAF was compared with the standard filter, the recursive filter, and the adaptive impulse correlated filter (AICF). As a result, the CAF showed a lower signal distortion than the standard filter and the AICF. Also, the CAF showed a better perf'ormance in noise elimination than the standard filter and the recursive filter. In conclusion, considering the characteristics of the noise elimination and the signal distortion, the CAF shows a better performance in the removal of the baseline wandering than the other three Otters and suggests the high performance in the detection of ST segment.

  • PDF

A Study on a Healthcare System Using Smart Clothes

  • Lim, Chae Young;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.372-377
    • /
    • 2014
  • Being able to monitor the heart will allow the diagnosis of heart diseases for patients during daily activities, and the detection of burden on the heart during strenuous exercise. Furthermore, with the help of U-health technology, immediate medical action can be taken, in the case of abnormal symptoms of the heart in daily life. Therefore, it appears to be necessary to develop the corresponding technology to monitor the condition of the heart daily. In this study, a novel wearable smart system was proposed, to monitor the activity of the heart in daily life, and to further evaluate the rhythm of arrhythmia. The wearable system includes three modified bipolar conductive fiber electrodes in the chest part, which can resolve the reduction problem of the magnitude of the signal, by magnifying the signal and removing the noise, to obtain high affinity and validity for medical-type usage (<0.903%). The biological signal acquisition and data lines, and the signal processing engine and communication consist of a conductive ink, and the pic18 and ANT protocol nRF24AP2, respectively. The proposed algorithm was able to detect a strong ECG, signal and r-point passing over the noise. The confidence intervals were 96 %, which could satisfy the requirement to detect arrhythmia under the unconstrained conditions.