• 제목/요약/키워드: AI-enhanced Performance

검색결과 31건 처리시간 0.015초

건설현장 내 객체검출 정확도 향상을 위한 저조도 영상 강화 기법에 관한 연구 (A Study on Low-Light Image Enhancement Technique for Improvement of Object Detection Accuracy in Construction Site)

  • 나종호;공준호;신휴성;윤일동
    • 터널과지하공간
    • /
    • 제34권3호
    • /
    • pp.208-217
    • /
    • 2024
  • AI영상 기반 건설현장 안전관리 모니터링 시스템 개발 및 적용하는 추세에 다양한 환경변화에 따른 위험 객체 탐지 딥러닝 모델 개발에 많은 연구적 관심이 쏟아지고 있다. 여러 환경 변화요인 중 저조도 조건에서 객체 검출 모델의 정확도는 현저히 감소하며, 저조도 환경을 고려한 학습을 수행하더라도 일관적인 객체 탐지 정확도를 확보할 수 없다. 이에 따라 저조도 영상을 강화하는 영상 전처리 기술의 필요성이 대두된다. 따라서, 본 논문은 취득된 건설 현장 영상 데이터를 활용하여 다양한 딥러닝 기반 저조도 영상 강화 모델(GLADNet, KinD, LLFlow, Zero-DCE)을 학습하고, 모델별 저조도 영상 강화 성능을 비교 검증실험을 진행하였다. 저조도 강화된 영상을 시각적으로 검증하였고, 영상품질 평가 지수(PSNR, SSIM, Delta-E)를 도입하여 정량적으로 분석하였다. 실험 결과, GLADNet의 저조도 영상 강화 성능이 정량·정성적 평가에서 우수한 결과를 보여줬으며, 저조도 영상 강화 모델로 적합한 것으로 분석되었다. 향후 딥러닝 기반 객체 검출 모델에 저조도 영상 강화 기법이 전처리 단계로 적용한다면, 저조도 환경에서 일관된 객체 검출 성능을 확보할 것으로 예상된다.