• Title/Summary/Keyword: AI-based learning assistance system

Search Result 7, Processing Time 0.024 seconds

Case Analysis on AI-Based Learning Assistance Systems (인공지능 기반 학습 지원 시스템에 관한 사례 분석)

  • Chee, Hyunkyung;Kim, Minji;Lee, Gayoung;Huh, Sunyoung;Kim, Myung sun
    • Journal of Engineering Education Research
    • /
    • v.27 no.4
    • /
    • pp.3-11
    • /
    • 2024
  • This study classified domestic and international systems by type, presenting their key features and examples, with the aim of outlining future directions for system development and research. AI-based learning assistance systems can be categorized into instructional-learning evaluation types and academic recommendation types, depending on their purpose. Instructional-learning evaluation types measure learners' levels through initial diagnostic assessments, provide customized learning, and offer adaptive feedback visualized based on learners' misconceptions identified through learning data. Academic recommendation types provide personalized academic pathways and a variety of information and functions to assist with overall school life, based on the big data held by schools. Based on these characteristics, future system development should clearly define the development purpose from the planning stage, considering data ethics and stability, and should not only approach from a technological perspective but also sufficiently reflect educational contexts.

Improving the Performance of Radiologists Using Artificial Intelligence-Based Detection Support Software for Mammography: A Multi-Reader Study

  • Jeong Hoon Lee;Ki Hwan Kim;Eun Hye Lee;Jong Seok Ahn;Jung Kyu Ryu;Young Mi Park;Gi Won Shin;Young Joong Kim;Hye Young Choi
    • Korean Journal of Radiology
    • /
    • v.23 no.5
    • /
    • pp.505-516
    • /
    • 2022
  • Objective: To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. Materials and Methods: A commercial deep learning-based software for mammography was validated using external data collected from 200 patients, 100 each with and without breast cancer (40 with benign lesions and 60 without lesions) from one hospital. Ten readers, including five breast specialist radiologists (BSRs) and five general radiologists (GRs), assessed all mammography images using a seven-point scale to rate the likelihood of malignancy in two sessions, with and without the aid of the AI-based software, and the reading time was automatically recorded using a web-based reporting system. Two reading sessions were conducted with a two-month washout period in between. Differences in the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and reading time between reading with and without AI were analyzed, accounting for data clustering by readers when indicated. Results: The AUROC of the AI alone, BSR (average across five readers), and GR (average across five readers) groups was 0.915 (95% confidence interval, 0.876-0.954), 0.813 (0.756-0.870), and 0.684 (0.616-0.752), respectively. With AI assistance, the AUROC significantly increased to 0.884 (0.840-0.928) and 0.833 (0.779-0.887) in the BSR and GR groups, respectively (p = 0.007 and p < 0.001, respectively). Sensitivity was improved by AI assistance in both groups (74.6% vs. 88.6% in BSR, p < 0.001; 52.1% vs. 79.4% in GR, p < 0.001), but the specificity did not differ significantly (66.6% vs. 66.4% in BSR, p = 0.238; 70.8% vs. 70.0% in GR, p = 0.689). The average reading time pooled across readers was significantly decreased by AI assistance for BSRs (82.73 vs. 73.04 seconds, p < 0.001) but increased in GRs (35.44 vs. 42.52 seconds, p < 0.001). Conclusion: AI-based software improved the performance of radiologists regardless of their experience and affected the reading time.

Conventional Versus Artificial Intelligence-Assisted Interpretation of Chest Radiographs in Patients With Acute Respiratory Symptoms in Emergency Department: A Pragmatic Randomized Clinical Trial

  • Eui Jin Hwang;Jin Mo Goo;Ju Gang Nam;Chang Min Park;Ki Jeong Hong;Ki Hong Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.3
    • /
    • pp.259-270
    • /
    • 2023
  • Objective: It is unknown whether artificial intelligence-based computer-aided detection (AI-CAD) can enhance the accuracy of chest radiograph (CR) interpretation in real-world clinical practice. We aimed to compare the accuracy of CR interpretation assisted by AI-CAD to that of conventional interpretation in patients who presented to the emergency department (ED) with acute respiratory symptoms using a pragmatic randomized controlled trial. Materials and Methods: Patients who underwent CRs for acute respiratory symptoms at the ED of a tertiary referral institution were randomly assigned to intervention group (with assistance from an AI-CAD for CR interpretation) or control group (without AI assistance). Using a commercial AI-CAD system (Lunit INSIGHT CXR, version 2.0.2.0; Lunit Inc.). Other clinical practices were consistent with standard procedures. Sensitivity and false-positive rates of CR interpretation by duty trainee radiologists for identifying acute thoracic diseases were the primary and secondary outcomes, respectively. The reference standards for acute thoracic disease were established based on a review of the patient's medical record at least 30 days after the ED visit. Results: We randomly assigned 3576 participants to either the intervention group (1761 participants; mean age ± standard deviation, 65 ± 17 years; 978 males; acute thoracic disease in 472 participants) or the control group (1815 participants; 64 ± 17 years; 988 males; acute thoracic disease in 491 participants). The sensitivity (67.2% [317/472] in the intervention group vs. 66.0% [324/491] in the control group; odds ratio, 1.02 [95% confidence interval, 0.70-1.49]; P = 0.917) and false-positive rate (19.3% [249/1289] vs. 18.5% [245/1324]; odds ratio, 1.00 [95% confidence interval, 0.79-1.26]; P = 0.985) of CR interpretation by duty radiologists were not associated with the use of AI-CAD. Conclusion: AI-CAD did not improve the sensitivity and false-positive rate of CR interpretation for diagnosing acute thoracic disease in patients with acute respiratory symptoms who presented to the ED.

Deep Learning OCR based document processing platform and its application in financial domain (금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용)

  • Dongyoung Kim;Doohyung Kim;Myungsung Kwak;Hyunsoo Son;Dongwon Sohn;Mingi Lim;Yeji Shin;Hyeonjung Lee;Chandong Park;Mihyang Kim;Dongwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.143-174
    • /
    • 2023
  • With the development of deep learning technologies, Artificial Intelligence powered Optical Character Recognition (AI-OCR) has evolved to read multiple languages from various forms of images accurately. For the financial industry, where a large number of diverse documents are processed through manpower, the potential for using AI-OCR is great. In this study, we present a configuration and a design of an AI-OCR modality for use in the financial industry and discuss the platform construction with application cases. Since the use of financial domain data is prohibited under the Personal Information Protection Act, we developed a deep learning-based data generation approach and used it to train the AI-OCR models. The AI-OCR models are trained for image preprocessing, text recognition, and language processing and are configured as a microservice architected platform to process a broad variety of documents. We have demonstrated the AI-OCR platform by applying it to financial domain tasks of document sorting, document verification, and typing assistance The demonstrations confirm the increasing work efficiency and conveniences.

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

Development of AI-based Real Time Agent Advisor System on Call Center - Focused on N Bank Call Center (AI기반 콜센터 실시간 상담 도우미 시스템 개발 - N은행 콜센터 사례를 중심으로)

  • Ryu, Ki-Dong;Park, Jong-Pil;Kim, Young-min;Lee, Dong-Hoon;Kim, Woo-Je
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.750-762
    • /
    • 2019
  • The importance of the call center as a contact point for the enterprise is growing. However, call centers have difficulty with their operating agents due to the agents' lack of knowledge and owing to frequent agent turnover due to downturns in the business, which causes deterioration in the quality of customer service. Therefore, through an N-bank call center case study, we developed a system to reduce the burden of keeping up business knowledge and to improve customer service quality. It is a "real-time agent advisor" system that provides agents with answers to customer questions in real time by combining AI technology for speech recognition, natural language processing, and questions & answers for existing call center information systems, such as a private branch exchange (PBX) and computer telephony integration (CTI). As a result of the case study, we confirmed that the speech recognition system for real-time call analysis and the corpus construction method improves the natural speech processing performance of the query response system. Especially with name entity recognition (NER), the accuracy of the corpus learning improved by 31%. Also, after applying the agent advisor system, the positive feedback rate of agents about the answers from the agent advisor was 93.1%, which proved the system is helpful to the agents.

A Study on the Intelligent Online Judging System Using User-Based Collaborative Filtering

  • Hyun Woo Kim;Hye Jin Yun;Kwihoon Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.273-285
    • /
    • 2024
  • With the active utilization of Online Judge (OJ) systems in the field of education, various studies utilizing learner data have emerged. This research proposes a problem recommendation based on a user-based collaborative filtering approach with learner data to support learners in their problem selection. Assistance in learners' problem selection within the OJ system is crucial for enhancing the effectiveness of education as it impacts the learning path. To achieve this, this system identifies learners with similar problem-solving tendencies and utilizes their problem-solving history. The proposed technique has been implemented on an OJ site in the fields of algorithms and programming, operated by the Chungbuk Education Research and Information Institute. The technique's service utility and usability were assessed through expert reviews using the Delphi technique. Additionally, it was piloted with site users, and an analysis of the ratio of correctness revealed approximately a 16% higher submission rate for recommended problems compared to the overall submissions. A survey targeting users who used the recommended problems yielded a 78% response rate, with the majority indicating that the feature was helpful. However, low selection rates of recommended problems and low response rates within the subset of users who used recommended problems highlight the need for future research focusing on improving accessibility, enhancing user feedback collection, and diversifying learner data analysis.