• Title/Summary/Keyword: AI-based image analysis

Search Result 120, Processing Time 0.022 seconds

Real time instruction classification system

  • Sang-Hoon Lee;Dong-Jin Kwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.212-220
    • /
    • 2024
  • A recently the advancement of society, AI technology has made significant strides, especially in the fields of computer vision and voice recognition. This study introduces a system that leverages these technologies to recognize users through a camera and relay commands within a vehicle based on voice commands. The system uses the YOLO (You Only Look Once) machine learning algorithm, widely used for object and entity recognition, to identify specific users. For voice command recognition, a machine learning model based on spectrogram voice analysis is employed to identify specific commands. This design aims to enhance security and convenience by preventing unauthorized access to vehicles and IoT devices by anyone other than registered users. We converts camera input data into YOLO system inputs to determine if it is a person, Additionally, it collects voice data through a microphone embedded in the device or computer, converting it into time-domain spectrogram data to be used as input for the voice recognition machine learning system. The input camera image data and voice data undergo inference tasks through pre-trained models, enabling the recognition of simple commands within a limited space based on the inference results. This study demonstrates the feasibility of constructing a device management system within a confined space that enhances security and user convenience through a simple real-time system model. Finally our work aims to provide practical solutions in various application fields, such as smart homes and autonomous vehicles.

Application of object detection algorithm for psychological analysis of children's drawing (아동 그림 심리분석을 위한 인공지능 기반 객체 탐지 알고리즘 응용)

  • Yim, Jiyeon;Lee, Seong-Oak;Kim, Kyoung-Pyo;Yu, Yonggyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • Children's drawings are widely used in the diagnosis of children's psychology as a means of expressing inner feelings. This paper proposes a children's drawings-based object detection algorithm applicable to children's psychology analysis. First, the sketch area from the picture was extracted and the data labeling process was also performed. Then, we trained and evaluated a Faster R-CNN based object detection model using the labeled datasets. Based on the detection results, information about the drawing's area, position, or color histogram is calculated to analyze primitive information about the drawings quickly and easily. The results of this paper show that Artificial Intelligence-based object detection algorithms were helpful in terms of psychological analysis using children's drawings.

A Research on Image Metadata Extraction through YCrCb Color Model Analysis for Media Hyper-personalization Recommendation (미디어 초개인화 추천을 위한 YCrCb 컬러 모델 분석을 통한 영상의 메타데이터 추출에 대한 연구)

  • Park, Hyo-Gyeong;Yong, Sung-Jung;You, Yeon-Hwi;Moon, Il-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.277-280
    • /
    • 2021
  • Recently as various contents are mass produced based on high accessibility, the media contents market is more active. Users want to find content that suits their taste, and each platform is competing for personalized recommendations for content. For an efficient recommendation system, high-quality metadata is required. Existing platforms take a method in which the user directly inputs the metadata of an image. This will waste time and money processing large amounts of data. In this paper, for media hyperpersonalization recommendation, keyframes are extracted based on the YCrCb color model of the video based on movie trailers, movie genres are distinguished through supervised learning of artificial intelligence and In the future, we would like to propose a utilization plan for generating metadata.

  • PDF

A Study on the AI Analysis of Crop Area Data in Aquaponics (아쿠아포닉스 환경에서의 작물 면적 데이터 AI 분석 연구)

  • Eun-Young Choi;Hyoun-Sup Lee;Joo Hyoung Cha;Lim-Gun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.861-866
    • /
    • 2023
  • Unlike conventional smart farms that require chemical fertilizers and large spaces, aquaponics farming, which utilizes the symbiotic relationship between aquatic organisms and crops to grow crops even in abnormal environments such as environmental pollution and climate change, is being actively researched. Different crops require different environments and nutrients for growth, so it is necessary to configure the ratio of aquatic organisms optimized for crop growth. This study proposes a method to measure the degree of growth based on area and volume using image processing techniques in an aquaponics environment. Tilapia, carp, catfish, and lettuce crops, which are aquatic organisms that produce organic matter through excrement, were tested in an aquaponics environment. Through 2D and 3D image analysis of lettuce and real-time data analysis, the growth degree was evaluated using the area and volume information of lettuce. The results of the experiment proved that it is possible to manage cultivation by utilizing the area and volume information of lettuce. It is expected that it will be possible to provide production prediction services to farmers by utilizing aquatic life and growth information. It will also be a starting point for solving problems in the changing agricultural environment.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).

A Study on Hair Color Design Works using the Gradient Technique among Hair Color Design Techniques: Focusing on Women (헤어 컬러디자인 기법 중 그라데이션 기법을 응용한 헤어 컬러디자인 작품연구:여성을 중심으로)

  • Seung-Joo Lee;Ki-Weon Park
    • Advanced Industrial SCIence
    • /
    • v.2 no.3
    • /
    • pp.29-36
    • /
    • 2023
  • The purpose of this study is to present basic data for hair color work plans that can consistently produce hair color design products for designers through analysis of gradient techniques among hair color design techniques. The research method was to select 10 photos of women that appeared in mass media from 2022 to September 15, 2023, extract color chips and RGB values using the Eyedropper Tool in Adobe Photoshop CS6, and convert the RGB values of the color chips into Munsell Conversion ( The data was converted into HV/C values of version 12.1.13a). Based on the extracted data, the gradient hair colors of female pop stars were analyzed by displaying the data on a color scale. As a result, in the I.R.I color scheme image scale, the image of female pop stars was more hard than soft. In addition, it was confirmed that the focus was on static rather than dynamic. Color matching images according to hair color were extracted with adjectives such as noble, decent, elegant, and subtle. Three hairstyles were created using this theme.

Analysis Study on the Detection and Classification of COVID-19 in Chest X-ray Images using Artificial Intelligence (인공지능을 활용한 흉부 엑스선 영상의 코로나19 검출 및 분류에 대한 분석 연구)

  • Yoon, Myeong-Seong;Kwon, Chae-Rim;Kim, Sung-Min;Kim, Su-In;Jo, Sung-Jun;Choi, Yu-Chan;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.661-672
    • /
    • 2022
  • After the outbreak of the SARS-CoV2 virus that causes COVID-19, it spreads around the world with the number of infections and deaths rising rapidly caused a shortage of medical resources. As a way to solve this problem, chest X-ray diagnosis using Artificial Intelligence(AI) received attention as a primary diagnostic method. The purpose of this study is to comprehensively analyze the detection of COVID-19 via AI. To achieve this purpose, 292 studies were collected through a series of Classification methods. Based on these data, performance measurement information including Accuracy, Precision, Area Under Cover(AUC), Sensitivity, Specificity, F1-score, Recall, K-fold, Architecture and Class were analyzed. As a result, the average Accuracy, Precision, AUC, Sensitivity and Specificity were achieved as 95.2%, 94.81%, 94.01%, 93.5%, and 93.92%, respectively. Although the performance measurement information on a year-on-year basis gradually increased, furthermore, we conducted a study on the rate of change according to the number of Class and image data, the ratio of use of Architecture and about the K-fold. Currently, diagnosis of COVID-19 using AI has several problems to be used independently, however, it is expected that it will be sufficient to be used as a doctor's assistant.

Escape Route Prediction and Tracking System using Artificial Intelligence (인공지능을 활용한 도주경로 예측 및 추적 시스템)

  • Yang, Bum-Suk;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1130-1135
    • /
    • 2022
  • In Seoul, about 75,000 CCTVs are installed in 25 district offices. Each ward office has built a control center for CCTV control and is performing 24-hour CCTV video control for the safety of citizens. Seoul Metropolitan Government is building a smart city integrated platform that is safe for citizens by providing CCTV images of the ward office to enable rapid response to emergency/emergency situations by signing an MOU with related organizations. In this paper, when an incident occurs at the Seoul Metropolitan Government Office, the escape route is predicted by discriminating people and vehicles using the AI DNN-based Template Matching technology, MLP algorithm and CNN-based YOLO SPP DNN model for CCTV images. In addition, it is designed to automatically disseminate image information and situation information to adjacent ward offices when vehicles and people escape from the competent ward office. The escape route prediction and tracking system using artificial intelligence can expand the smart city integrated platform nationwide.

Development of AI-based Smart Agriculture Early Warning System

  • Hyun Sim;Hyunwook Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.67-77
    • /
    • 2023
  • This study represents an innovative research conducted in the smart farm environment, developing a deep learning-based disease and pest detection model and applying it to the Intelligent Internet of Things (IoT) platform to explore new possibilities in the implementation of digital agricultural environments. The core of the research was the integration of the latest ImageNet models such as Pseudo-Labeling, RegNet, EfficientNet, and preprocessing methods to detect various diseases and pests in complex agricultural environments with high accuracy. To this end, ensemble learning techniques were applied to maximize the accuracy and stability of the model, and the model was evaluated using various performance indicators such as mean Average Precision (mAP), precision, recall, accuracy, and box loss. Additionally, the SHAP framework was utilized to gain a deeper understanding of the model's prediction criteria, making the decision-making process more transparent. This analysis provided significant insights into how the model considers various variables to detect diseases and pests.

Designing Dataset for Artificial Intelligence Learning for Cold Sea Fish Farming

  • Sung-Hyun KIM;Seongtak OH;Sangwon LEE
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.208-216
    • /
    • 2023
  • The purpose of our study is to design datasets for Artificial Intelligence learning for cold sea fish farming. Salmon is considered one of the most popular fish species among men and women of all ages, but most supplies depend on imports. Recently, salmon farming, which is rapidly emerging as a specialized industry in Gangwon-do, has attracted attention. Therefore, in order to successfully develop salmon farming, the need to systematically build data related to salmon and salmon farming and use it to develop aquaculture techniques is raised. Meanwhile, the catch of pollack continues to decrease. Efforts should be made to improve the major factors affecting pollack survival based on data, as well as increasing the discharge volume for resource recovery. To this end, it is necessary to systematically collect and analyze data related to pollack catch and ecology to prepare a sustainable resource management strategy. Image data was obtained using CCTV and underwater cameras to establish an intelligent aquaculture strategy for salmon and pollock, which are considered representative fish species in Gangwon-do. Using these data, we built learning data suitable for AI analysis and prediction. Such data construction can be used to develop models for predicting the growth of salmon and pollack, and to develop algorithms for AI services that can predict water temperature, one of the key variables that determine the survival rate of pollack. This in turn will enable intelligent aquaculture and resource management taking into account the ecological characteristics of fish species. These studies look forward to achievements on an important level for sustainable fisheries and fisheries resource management.