• Title/Summary/Keyword: AI-based System and Technology

Search Result 467, Processing Time 0.032 seconds

Technical Trends of AI Military Staff to Support Decision-Making of Commanders (지휘관들의 의사결정지원을 위한 AI 군참모 기술동향)

  • Lee, C.E.;Son, J.H.;Park, H.S.;Lee, S.Y.;Park, S.J.;Lee, Y.T.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.89-98
    • /
    • 2021
  • The Ministry of National Defense aims to create an environment in which transparent and reasonable defense policies can be implemented in real time by establishing the vision of smart defense innovation based on the Fourth Industrial Revolution and promoting innovation in technology-based defense operation systems. Artificial intelligence (AI) based defense technology is at the level of basic research worldwide, includes no domestic tasks, and involves classified military operation data and command control/decision information. Further, it is needed to secure independent technologies specialized for our military. In the army, military power continues to decline due to aging and declining population. In addition, it is expected that there will be more than 500,000 units should be managed simultaneously, to recognize the battle situation in real time on the future battlefields. Such a complex battlefield, command decisions will be limited by the experience and expertise of individual commanders. Accordingly, the study of AI core technologies supporting real-time combat command is actively pursued at home and abroad. It is necessary to strengthen future defense capabilities by identifying potential threats that commanders are likely to miss, improving the viability of the combat system, ensuring smart commanders always win conflicts and providing reasonable AI digital staff based on data science. This paper describes the recent research trends in AI military staff technology supporting commander decision-making, broken down into five key areas.

Conceptual Design of the Artificial Intelligence based Tactical Command Decision Support System using the Functional Analysis Method (기능분석법을 이용한 인공지능 기반 전술제대 지휘결심지원체계의 개념설계)

  • Choi, Keun Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.650-658
    • /
    • 2020
  • The research of the AI-based command decision support system was insufficient both quantitatively and qualitatively. In particular, in Korea, there was no research on concrete concept design at the current concept research level. This paper proposed the conceptual design of a tactical echelon command decision support system based on artificial intelligence(AI) according to the current army's doctrine of the operation process. The suggested conceptual design clarified the problem and proposed an appropriate process for design, and applied the function analysis method among rational techniques that enable conceptual design systematically.

A Study on the Construction Method of HS Item Classification Decision System Based on Artificial Intelligence

  • Choi, keong ju
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.165-172
    • /
    • 2020
  • Industrial Revolution means the improvement of productivity through technological innovation and has been a driving force of the whole change of economic system and social structure as the characteristic of technology as the tool of this productivity has changed. Since the first industrial revolution of the 18th century, productivity efficiency has been advanced through three industrial revolutions so far, and this fourth industrial revolution is expected to bring about another revolution of production. In this study, the demand for the introduction of artificial intelligence(AI) technology has been increasing in various business fields due to the rapid development of ICT technology, and the classification of HS(harmonized commodity description and coding system) items has been decided using artificial intelligence technology, which is the core of the fourth industrial revolution. And it is enough to construct HS classification system based on AI technology using inference and deep learning. Performing the HS item classification is not an easy task. Implementation of item classification system using artificial intelligence technology to analyze information of HS item classification which is performed manually by the current person more accurately and without any mistake, And the customs administrations, customs offices, and customs agencies, it is expected to be highly utilized in the innovation of trade practice and the customs administration innovation FTA origin agent.

A Graph-Agent-Based Approach to Enhancing Knowledge-Based QA with Advanced RAG (지식 기반 QA개선을 위한 Advanced RAG 시스템 구현 방법: Graph Agent 활용)

  • Cheonsu Jeong
    • Knowledge Management Research
    • /
    • v.25 no.3
    • /
    • pp.99-119
    • /
    • 2024
  • This research aims to develop high-quality generative AI services by overcoming the limitations of existing Retrieval-Augmented Generation (RAG) models and implementing an enhanced graph-based RAG system to improve knowledge-based question answering (QA) systems. While traditional RAG models demonstrate high accuracy and fluency by utilizing retrieved information, their accuracy can be compromised due to the use of pre-loaded knowledge without rework. Additionally, the inability to incorporate real-time data after the RAG configuration leads to a lack of contextual understanding and potential biased information. To address these limitations, this study implements an enhanced RAG system utilizing graph technology. This system is designed to efficiently search and utilize information. In particular, LangGraph is employed to evaluate the reliability of retrieved information and to generate more accurate and improved answers by integrating various information. Furthermore, the specific operation method, key implementation steps, and case studies are presented with implementation code and verification results to enhance understanding of Advanced RAG technology. This research provides practical guidelines for actively implementing enterprise services utilizing Advanced RAG, making it significant.

Implementation of a Job Prediction Program and Analysis of Vocational Training Evaluation Data Based on Artificial Intelligence (인공지능(AI) 기반 직업 훈련 평가 데이터 분석 및 취업 예측 프로그램 구현)

  • Jae-Sung Chun;Il-Young Moon
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.409-414
    • /
    • 2024
  • This paper utilizes artificial intelligence to analyze vocational training evaluation data for people with disabilities and selects the optimal prediction model using various machine learning algorithms. It predicts the job categories most likely to employ trainees based on data such as gender, age, education level, type of disability, and basic learning abilities. The goal is to design customized training programs based on these predictions to enhance training efficiency and employment success rates.

DBERT: Embedding Model Based on Contrastive Learning Considering the Characteristics of Multi-turn Context (DBERT: 멀티턴 문맥의 특징을 고려한 대조 학습 기반의 임베딩 모델링)

  • Sangmin Park;Jaeyun Lee;Jaieun Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.272-274
    • /
    • 2022
  • 최근에는 사람과 기계가 자유롭게 대화를 주고받을 수 있는 자유 주제 대화 시스템(Open-domain Dialogue System)이 다양한 서비스에 활용되고 있다. 자유 주제 대화 시스템이 더욱 다양한 답변을 제공할 수 있도록 사전학습 기반의 생성 언어모델이 활용되고 있지만, 답변 제공의 안정성이 떨어져 검색을 활용한 방법 또한 함께 활용되고 있다. 검색 기반 방법은 사용자의 대화가 들어오면 사전에 구축된 데이터베이스에서 유사한 대화를 검색하고 준비되어있는 답변을 제공하는 기술이다. 하지만 멀티턴으로 이루어진 대화는 일반적인 문서의 문장과 다르게 각 문장에 대한 발화의 주체가 변경되기 때문에 연속된 발화 문장이 문맥적으로 밀접하게 연결되지 않는 경우가 있다. 본 논문에서는 이와 같은 대화의 특징을 고려하여 멀티턴 대화를 효율적으로 임베딩 할 수 있는 DBERT(DialogueBERT) 모델을 제안한다. 기존 공개된 사전학습 언어모델 기반의 문장 임베딩 모델과 비교 평가 실험을 통해 제안하는 방법의 우수성을 입증한다.

  • PDF

Why Data Capability is Important to become an AI Matured Organization?

  • Gyeung-min Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.3
    • /
    • pp.165-179
    • /
    • 2024
  • Although firms with advanced analytics and machine learning (which is often called AI) capabilities are considered to be highly successful in the market by making decisions and actions based on quantitative analysis using data, the scarcity of historical data and the lack of right data infrastructure are the problems for the organizations to perform such projects. The objective of this study, is to identify a road map for the organization to reach data capability maturity to become AI matured organizations. First, this study defines the terms, AI capability, data capability and AI matured organization. Then using content analyses, organizations' data practices performed for AI system development and operation are analyzed to infer a data capability roadmap to become an AI matured organization.

A Study on Korean Poetry Generation System Based on Artificial Intelligence (인공지능 기반 한국어 시 생성 시스템 개발 연구)

  • Myung-sun Kim;Woo-Hyuk Jung;Jihwan Woo
    • Information Systems Review
    • /
    • v.25 no.3
    • /
    • pp.43-57
    • /
    • 2023
  • In this study, we developed an AI-based system to generate sentences that assist in creating Korean poetry. Instead of replacing the creative aspect of composition, which is considered a unique domain of humans, the focus was on generating foundational sentences to enhance human imagination efficiently. By conducting interviews with poets, the researchers extracted sentences from eight distinct datasets, enabling the generation of poetry across eight different genres. This study stands out for its innovation in developing a method for crafting literary works in Korean. Its significance lies in its potential to facilitate the creation of diverse literary forms such as essays, prose, or novels.

Building Fire Monitoring and Escape Navigation System Based on AR and IoT Technologies (AR과 IoT 기술을 기반으로 한 건물 화재 모니터링 및 탈출 내비게이션 시스템)

  • Wentao Wang;Seung-Yong Lee;Sanghun Park;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.159-169
    • /
    • 2024
  • This paper proposes a new real-time fire monitoring and evacuation navigation system by integrating Augmented Reality (AR) technology with Internet of Things (IoT) technology. The proposed system collects temperature data through IoT temperature measurement devices installed in buildings and automatically transmits it to a MySQL cloud database via an IoT platform, enabling real-time and accurate data monitoring. Subsequently, the real-time IoT data is visualized on a 3D building model generated through Building Information Modeling (BIM), and the model is represented in the real world using AR technology, allowing intuitive identification of the fire origin. Furthermore, by utilizing Vuforia engine's Device Tracking and Area Targets features, the system tracks the user's real-time location and employs an enhanced A* algorithm to find the optimal evacuation route among multiple exits. The paper evaluates the proposed system's practicality and demonstrates its effectiveness in rapid and safe evacuation through user experiments based on various virtual fire scenarios.

Development of an AI Analysis Service System based on OpenFaaS (OpenFaaS 기반 AI 분석 서비스 시스템 구축)

  • Jang, Rae-young;Lee, Ryong;Park, Min-woo;Lee, Sang-hwan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.97-106
    • /
    • 2020
  • Due to the rapid development and dissemination of 5G communication and IoT technologies, there are increasing demands for big data analysis techniques and service systems. In particular, explosively growing demands on AI technology adoption are also causing high competitions to take advantages of machine/deep-learning models to extract novel values from enormously collected data. In order to adopt AI technology to various research and application domains, it is necessary to prepare high-performance GPU-equipped systems and perform complicated settings to utilze deep learning models. To relieve the efforts and lower the barrier to utilize AI techniques, AIaaS(AI as a service) platform is attracting a great deal of attention as a promising on-line service, where the complexity of preparation and operation can be hidden behind the cloud side and service developers only need to utilize the high-level AI services easily. In this paper, we propose an AIaaS system which can support the creation of AI services based on Docker and OpenFaaS from the registration of models to the on-line operation. We also describe a case study to show how AI services can be easily generated by the proposed system.