• Title/Summary/Keyword: AI-based System and Technology

Search Result 467, Processing Time 0.032 seconds

Analysis of Users' Emotions on Lighting Effect of Artificial Intelligence Devices (인공지능 디바이스의 조명효과에 대한 사용자의 감정 평가 분석)

  • Hyeon, Yuna;Pan, Young-hwan;Yoo, Hoon-Sik
    • Science of Emotion and Sensibility
    • /
    • v.22 no.3
    • /
    • pp.35-46
    • /
    • 2019
  • Artificial intelligence (AI) technology has been evolving to recognize and learn the languages, voice tones, and facial expressions of users so that they can respond to users' emotions in various contexts. Many AI-based services of particular importance in communications with users provide emotional interaction. However, research on nonverbal interaction as a means of expressing emotion in the AI system is still insufficient. We studied the effect of lighting on users' emotional interaction with an AI device, focusing on color and flickering motion. The AI device used in this study expresses emotions with six colors of light (red, yellow, green, blue, purple, and white) and with a three-level flickering effect (high, middle, and low velocity). We studied the responses of 50 men and women in their 20s and 30s to the emotions expressed by the light colors and flickering effects of the AI device. We found that each light color represented an emotion that was largely similar to the user's emotional image shown in a previous color-sensibility study. The rate of flickering of the lights produced changes in emotional arousal and balance. The change in arousal patterns produced similar intensities of all colors. On the other hand, changes in balance patterns were somewhat related to the emotional image in the previous color-sensibility study, but the colors were different. As AI systems and devices are becoming more diverse, our findings are expected to contribute to designing the users emotional with AI devices through lighting.

A Study on Education system for nurturing Intelligent Information Technology practitioners in College (지능정보기술 실무인재 양성을 위한 전문대학 교육체계 구축 방안)

  • Kim, SungRim;Yeo, MinWoo;Cho, EunSook;Hong, YuNa;Heo, YoungJun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.63-75
    • /
    • 2021
  • It is necessary to respond to rapid technological changes such as the 4th industrial revolution and digital transformation across industries. And, a change in the university education system is necessary in a crisis situation of universities due to the rapid decrease of the school-age population. This study is aimed at practical competency with the ability to apply intelligent information technology to their job fields based on a basic understanding of intelligent information technology rather than advanced competency centered on theory and research. Instead of presenting the curriculum system diagram so that it can be flexibly applied to the design and development of the curriculum for intelligent information technology, training modules according to job and level were presented. In relation to intelligent information technology, a questionnaire was conducted for college professors, and industry experts were conducted on the derived educational modules to reflect the opinions of the industry. Industry experts said that collaboration with PBL, Capstone, and industry is necessary to improve problem-solving and communication skills.

Study on Prediction of Similar Typhoons through Neural Network Optimization (뉴럴 네트워크의 최적화에 따른 유사태풍 예측에 관한 연구)

  • Kim, Yeon-Joong;Kim, Tae-Woo;Yoon, Jong-Sung;Kim, In-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.427-434
    • /
    • 2019
  • Artificial intelligence (AI)-aided research currently enjoys active use in a wide array of fields thanks to the rapid development of computing capability and the use of Big Data. Until now, forecasting methods were primarily based on physics models and statistical studies. Today, AI is utilized in disaster prevention forecasts by studying the relationships between physical factors and their characteristics. Current studies also involve combining AI and physics models to supplement the strengths and weaknesses of each aspect. However, prior to these studies, an optimization algorithm for the AI model should be developed and its applicability should be studied. This study aimed to improve the forecast performance by constructing a model for neural network optimization. An artificial neural network (ANN) followed the ever-changing path of a typhoon to produce similar typhoon predictions, while the optimization achieved by the neural network algorithm was examined by evaluating the activation function, hidden layer composition, and dropouts. A learning and test dataset was constructed from the available digital data of one typhoon that affected Korea throughout the record period (1951-2018). As a result of neural network optimization, assessments showed a higher degree of forecast accuracy.

A Fuzzy-AHP-based Movie Recommendation System using the GRU Language Model (GRU 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.319-325
    • /
    • 2021
  • With the advancement of wireless technology and the rapid growth of the infrastructure of mobile communication technology, systems applying AI-based platforms are drawing attention from users. In particular, the system that understands users' tastes and interests and recommends preferred items is applied to advanced e-commerce customized services and smart homes. However, there is a problem that these recommendation systems are difficult to reflect in real time the preferences of various users for tastes and interests. In this research, we propose a Fuzzy-AHP-based movies recommendation system using the Gated Recurrent Unit (GRU) language model to address a problem. In this system, we apply Fuzzy-AHP to reflect users' tastes or interests in real time. We also apply GRU language model-based models to analyze the public interest and the content of the film to recommend movies similar to the user's preferred factors. To validate the performance of this recommendation system, we measured the suitability of the learning model using scraping data used in the learning module, and measured the rate of learning performance by comparing the Long Short-Term Memory (LSTM) language model with the learning time per epoch. The results show that the average cross-validation index of the learning model in this work is suitable at 94.8% and that the learning performance rate outperforms the LSTM language model.

Distributed AI Learning-based Proof-of-Work Consensus Algorithm (분산 인공지능 학습 기반 작업증명 합의알고리즘)

  • Won-Boo Chae;Jong-Sou Park
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The proof-of-work consensus algorithm used by most blockchains is causing a massive waste of computing resources in the form of mining. A useful proof-of-work consensus algorithm has been studied to reduce the waste of computing resources in proof-of-work, but there are still resource waste and mining centralization problems when creating blocks. In this paper, the problem of resource waste in block generation was solved by replacing the relatively inefficient computation process for block generation with distributed artificial intelligence model learning. In addition, by providing fair rewards to nodes participating in the learning process, nodes with weak computing power were motivated to participate, and performance similar to the existing centralized AI learning method was maintained. To show the validity of the proposed methodology, we implemented a blockchain network capable of distributed AI learning and experimented with reward distribution through resource verification, and compared the results of the existing centralized learning method and the blockchain distributed AI learning method. In addition, as a future study, the thesis was concluded by suggesting problems and development directions that may occur when expanding the blockchain main network and artificial intelligence model.

Real-Time CCTV Based Garbage Detection for Modern Societies using Deep Convolutional Neural Network with Person-Identification

  • Syed Muhammad Raza;Syed Ghazi Hassan;Syed Ali Hassan;Soo Young Shin
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.109-120
    • /
    • 2024
  • Trash or garbage is one of the most dangerous health and environmental problems that affect pollution. Pollution affects nature, human life, and wildlife. In this paper, we propose modern solutions for cleaning the environment of trash pollution by enforcing strict action against people who dump trash inappropriately on streets, outside the home, and in unnecessary places. Artificial Intelligence (AI), especially Deep Learning (DL), has been used to automate and solve issues in the world. We availed this as an excellent opportunity to develop a system that identifies trash using a deep convolutional neural network (CNN). This paper proposes a real-time garbage identification system based on a deep CNN architecture with eight distinct classes for the training dataset. After identifying the garbage, the CCTV camera captures a video of the individual placing the trash in the incorrect location and sends an alert notice to the relevant authority.

Proposal of AI-based Digital Forensic Evidence Collecting System

  • Jang, Eun-Jin;Shin, Seung-Jung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.124-129
    • /
    • 2021
  • As the 4th industrial era is in full swing, the public's interest in related technologies such as artificial intelligence, big data, and block chain is increasing. As artificial intelligence technology is used in various industrial fields, the need for research methods incorporating artificial intelligence technology in related fields is also increasing. Evidence collection among digital forensic investigation techniques is a very important procedure in the investigation process that needs to prove a specific person's suspicions. However, there may be cases in which evidence is damaged due to intentional damage to evidence or other physical reasons, and there is a limit to the collection of evidence in this situation. Therefore, this paper we intends to propose an artificial intelligence-based evidence collection system that analyzes numerous image files reported by citizens in real time to visually check the location, user information, and shooting time of the image files. When this system is applied, it is expected that the evidence expected data collected in real time can be actually used as evidence, and it is also expected that the risk area analysis will be possible through big data analysis.

LMI based criterion for reinforced concrete frame structures

  • Chen, Tim;Kau, Dar;Tai, Y.;Chen, C.Y.J.
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.407-412
    • /
    • 2020
  • Due to the influence of nonlinearity and time-variation, it is difficult to establish an accurate model of concrete frame structures that adopt active controllers. Fuzzy theory is a relatively appropriate method but susceptible to human subjective experience to decrease the performance. To guarantee the stability of multi-time delays complex system with multi-interconnections, a delay-dependent criterion of evolved design is proposed in this paper. Based on this criterion, the sector nonlinearity which converts the nonlinear model to multiple rule base of the linear model and a new sufficient condition to guarantee the asymptotic stability via Lyapunov function is implemented in terms of linear matrix inequalities (LMI). A numerical simulation for a three-layer reinforced concrete frame structure subjected to earthquakes is demonstrated that the proposed criterion is feasible for practical applications.

Development of a Synthetic Multi-Agent System;The KMITL Cadence 2003 Robotic Soccer Simulation Team, Intelligent and AI Based Control

  • Chitipalungsri, Thunyawat;Jirawatsiwaporn, Chawit;Tangchupong, Thanapon;Kittitornkun, Surin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.879-884
    • /
    • 2004
  • This paper describes the development of a synthetic multi-agent called KMITL Cadence 2003. KMITL Cadence 2003 is a robotic soccer simulation team consisting of eleven autonomous software agents. Each agent operates in a physical soccer simulation model called Robocup Soccer Server which provides fully distributed and real-time multi-agent system environment. All teammates have to cooperate to achieve the common goal of winning the game. The simulation models many aspects of the football field such as noise in ball movements, noisy sensors, unreliable communication channel between teammates and actuators, limited physical abilities and restricted communication. This paper addresses the algorithm to develop the soccer agents to perform basic actions which are scoring, passing ball and blocking the opponents effectively. The result of this development is satisfactory because the successful scoring attempts is increased from 11.1% to 33.3%, successful passing ball attempts is increased from 22.08% to 63.64%, and also, successful intercepting attempts is increased from 88% to 97.73%.

  • PDF

Development of Noise and AI-based Pavement Condition Rating Evaluation System (소음도·인공지능 기반 포장상태등급 평가시스템 개발)

  • Han, Dae-Seok;Kim, Young-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This study developed low-cost and high-efficiency pavement condition monitoring technology to produce the key information required for pavement management. A noise and artificial intelligence-based monitoring system was devised to compensate for the shortcomings of existing high-end equipment that relies on visual information and high-end sensors. From idea establishment to system development, functional definition, information flow, architecture design, and finally, on-site field evaluations were carried out. As a result, confidence in the high level of artificial intelligence evaluation was secured. In addition, hardware and software elements and well-organized guidelines on system utilization were developed. The on-site evaluation process confirmed that non-experts could easily and quickly investigate and visualized the data. The evaluation results could support the management works of road managers. Furthermore, it could improve the completeness of the technologies, such as prior discriminating techniques for external conditions that are not considered in AI learning, system simplification, and variable speed response techniques. This paper presents a new paradigm for pavement monitoring technology that has lasted since the 1960s.