• Title/Summary/Keyword: AI-based System and Technology

Search Result 467, Processing Time 0.027 seconds

Combining genetic algorithms and support vector machines for bankruptcy prediction

  • Min, Sung-Hwan;Lee, Ju-Min;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.179-188
    • /
    • 2004
  • Bankruptcy prediction is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. Recently, support vector machine (SVM) has been applied to the problem of bankruptcy prediction. The SVM-based method has been compared with other methods such as neural network, logistic regression and has shown good results. Genetic algorithm (GA) has been increasingly applied in conjunction with other AI techniques such as neural network, CBR. However, few studies have dealt with integration of GA and SVM, though there is a great potential for useful applications in this area. This study proposes the methods for improving SVM performance in two aspects: feature subset selection and parameter optimization. GA is used to optimize both feature subset and parameters of SVM simultaneously for bankruptcy prediction.

  • PDF

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.

Building Living Lab for Acquiring Behavioral Data for Early Screening of Developmental Disorders

  • Kim, Jung-Jun;Kwon, Yong-Seop;Kim, Min-Gyu;Kim, Eun-Soo;Kim, Kyung-Ho;Sohn, Dong-Seop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.47-54
    • /
    • 2020
  • Developmental disorders are impairments of brain and/or central nervous system and refer to a disorder of brain function that affects languages, communication skills, perception, sociality and so on. In diagnosis of developmental disorders, behavioral response such as expressing emotions in proper situation is one of observable indicators that tells whether or not individual has the disorders. However, diagnosis by observation can allow subjective evaluation that leads erroneous conclusion. This research presents the technological environment and data acquisition system for AI based screening of autism disorder. The environment was built considering activities for two screening protocols, namely Autism Diagnostic Observation Schedule (ADOS) and Behavior Development Screening for Toddler (BeDevel). The activities between therapist and baby during the screening are fully recorded. The proposed software in this research was designed to support recording, monitoring and data tagging for learning AI algorithms.

Intuitionistic Fuzzy Expert System based Fault Diagnosis using Dissolved Gas Analysis for Power Transformer

  • Mani, Geetha;Jerome, Jovitha
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2058-2064
    • /
    • 2014
  • In transformer fault diagnosis, dissolved gas analysis (DGA) is been widely employed for a long period and numerous methods have been innovated to interpret its results. Still in some cases it fails to identify the corresponding faults. Due to the limitation of training data and non-linearity, the estimation of key-gas ratio in the transformer oil becomes more complicated. This paper presents Intuitionistic Fuzzy expert System (IFS) to diagnose several faults in a transformer. This revised approach is well suitable to diagnosis the transformer faults and the corresponding action to be taken. The proposed method is applied to an independent data of different power transformers and various case studies of historic trends of transformer units. It has been proved to be a very advantageous tool for transformer diagnosis and upkeep planning. This method has been successfully used to identify the type of fault developing within a transformer even if there is conflict in the results of AI technique applied to DGA data.

A Study on Efficient AI Model Drift Detection Methods for MLOps (MLOps를 위한 효율적인 AI 모델 드리프트 탐지방안 연구)

  • Ye-eun Lee;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.17-27
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology develops and its practicality increases, it is widely used in various application fields in real life. At this time, the AI model is basically learned based on various statistical properties of the learning data and then distributed to the system, but unexpected changes in the data in a rapidly changing data situation cause a decrease in the model's performance. In particular, as it becomes important to find drift signals of deployed models in order to respond to new and unknown attacks that are constantly created in the security field, the need for lifecycle management of the entire model is gradually emerging. In general, it can be detected through performance changes in the model's accuracy and error rate (loss), but there are limitations in the usage environment in that an actual label for the model prediction result is required, and the detection of the point where the actual drift occurs is uncertain. there is. This is because the model's error rate is greatly influenced by various external environmental factors, model selection and parameter settings, and new input data, so it is necessary to precisely determine when actual drift in the data occurs based only on the corresponding value. There are limits to this. Therefore, this paper proposes a method to detect when actual drift occurs through an Anomaly analysis technique based on XAI (eXplainable Artificial Intelligence). As a result of testing a classification model that detects DGA (Domain Generation Algorithm), anomaly scores were extracted through the SHAP(Shapley Additive exPlanations) Value of the data after distribution, and as a result, it was confirmed that efficient drift point detection was possible.

Cloud Storage Security Deduplication Scheme Based on Dynamic Bloom Filter

  • Yan, Xi-ai;Shi, Wei-qi;Tian, Hua
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1265-1276
    • /
    • 2019
  • Data deduplication is a common method to improve cloud storage efficiency and save network communication bandwidth, but it also brings a series of problems such as privacy disclosure and dictionary attacks. This paper proposes a secure deduplication scheme for cloud storage based on Bloom filter, and dynamically extends the standard Bloom filter. A public dynamic Bloom filter array (PDBFA) is constructed, which improves the efficiency of ownership proof, realizes the fast detection of duplicate data blocks and reduces the false positive rate of the system. In addition, in the process of file encryption and upload, the convergent key is encrypted twice, which can effectively prevent violent dictionary attacks. The experimental results show that the PDBFA scheme has the characteristics of low computational overhead and low false positive rate.

Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection (설명가능 AI 기반의 변수선정을 이용한 기업부실예측모형)

  • Gundoo Moon;Kyoung-jae Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.241-265
    • /
    • 2023
  • A corporate insolvency prediction model serves as a vital tool for objectively monitoring the financial condition of companies. It enables timely warnings, facilitates responsive actions, and supports the formulation of effective management strategies to mitigate bankruptcy risks and enhance performance. Investors and financial institutions utilize default prediction models to minimize financial losses. As the interest in utilizing artificial intelligence (AI) technology for corporate insolvency prediction grows, extensive research has been conducted in this domain. However, there is an increasing demand for explainable AI models in corporate insolvency prediction, emphasizing interpretability and reliability. The SHAP (SHapley Additive exPlanations) technique has gained significant popularity and has demonstrated strong performance in various applications. Nonetheless, it has limitations such as computational cost, processing time, and scalability concerns based on the number of variables. This study introduces a novel approach to variable selection that reduces the number of variables by averaging SHAP values from bootstrapped data subsets instead of using the entire dataset. This technique aims to improve computational efficiency while maintaining excellent predictive performance. To obtain classification results, we aim to train random forest, XGBoost, and C5.0 models using carefully selected variables with high interpretability. The classification accuracy of the ensemble model, generated through soft voting as the goal of high-performance model design, is compared with the individual models. The study leverages data from 1,698 Korean light industrial companies and employs bootstrapping to create distinct data groups. Logistic Regression is employed to calculate SHAP values for each data group, and their averages are computed to derive the final SHAP values. The proposed model enhances interpretability and aims to achieve superior predictive performance.

A Study on Smart Device for Open Platform Ontology Construction of Autonomous Vihicles (자율주행자동차 오픈플랫폼 온톨로지 구축을 위한 스마트디바이스 연구)

  • Choi, Byung Kwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • The 4th Industrial Revolution, intelligent automobile application technology is evolving beyond the limit of the mobile device to a variety of application software and multi-media collective technology with big data-based AI(artificial intelligence) technology. with the recent commercialization of 5G mobile communication service, artificial intelligent automobile technology, which is a fusion of automobile and IT technology, is evolving into more intelligent automobile service technology, and each multimedia platform service and application developed in such distributed environment is being developed Accordingly, application software technology developed with a single system SoC of a portable terminal device through various service technologies is absolutely required. In this paper, smart device design for ontology design of intelligent automobile open platform enables to design intelligent automobile middleware software design technology such as Android based SVC Codec and real time video and graphics processing that is not expressed in single ASIC application software technology as SoC based application designWe have experimented in smart device environment through researches, and newly designed service functions of various terminal devices provided as open platforms and application solutions in SoC environment and applied standardized interface analysis technique and proved this experiment.

Boot storm Reduction through Artificial Intelligence Driven System in Virtual Desktop Infrastructure

  • Heejin Lee;Taeyoung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.1-9
    • /
    • 2024
  • In this paper, we propose BRAIDS, a boot storm mitigation plan consisting of an AI-based VDI usage prediction system and a virtual machine boot scheduler system, to alleviate boot storms and improve service stability. Virtual Desktop Infrastructure (VDI) is an important technology for improving an organization's work productivity and increasing IT infrastructure efficiency. Boot storms that occur when multiple virtual desktops boot simultaneously cause poor performance and increased latency. Using the xgboost algorithm, existing VDI usage data is used to predict future VDI usage. In addition, it receives the predicted usage as input, defines a boot storm considering the hardware specifications of the VDI server and virtual machine, and provides a schedule to sequentially boot virtual machines to alleviate boot storms. Through the case study, the VDI usage prediction model showed high prediction accuracy and performance improvement, and it was confirmed that the boot storm phenomenon in the virtual desktop environment can be alleviated and IT infrastructure can be utilized efficiently through the virtual machine boot scheduler.

A Study on the Development of integrated Process Safety Management System based on Artificial Intelligence (AI) (인공지능(AI) 기반 통합 공정안전관리 시스템 개발에 관한 연구)

  • KyungHyun Lee;RackJune Baek;WooSu Kim;HeeJeong Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.403-409
    • /
    • 2024
  • In this paper, the guidelines for the design of an Artificial Intelligence(AI) based Integrated Process Safety Management(PSM) system to enhance workplace safety using data from process safety reports submitted by hazardous and risky facility operators in accordance with the Occupational Safety and Health Act is proposed. The system composed of the proposed guidelines is to be implemented separately by individual facility operators and specialized process safety management agencies for single or multiple workplaces. It is structured with key components and stages, including data collection and preprocessing, expansion and segmentation, labeling, and the construction of training datasets. It enables the collection of process operation data and change approval data from various processes, allowing potential fault prediction and maintenance planning through the analysis of all data generated in workplace operations, thereby supporting decision-making during process operation. Moreover, it offers utility and effectiveness in time and cost savings, detection and prediction of various risk factors, including human errors, and continuous model improvement through the use of accurate and reliable training data and specialized datasets. Through this approach, it becomes possible to enhance workplace safety and prevent accidents.