• Title/Summary/Keyword: AI-based System and Technology

Search Result 467, Processing Time 0.029 seconds

A Study on Technology Acceptance of Elderly living Alone in Smart City Environment: Based on AI Speaker

  • YOO, Hyun-Sil;SUH, Eung-Kyo;KIM, Tae-Hyung
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.2
    • /
    • pp.41-48
    • /
    • 2020
  • Purpose: This study is to examine the intention of the elderly who live alone in the customized AI speaker for the elderly living alone to improve the quality of life service for the elderly living alone in the smart city environment. Based on the quality of life model of the elderly, this study is applied to the technology acceptance model to investigate the relationship between perceived usefulness and ease of use on the sustained use intention. Research design, data and methodology: Residents in Suwon, Gyeonggi-do, selected as candidate local governments for the Smart City Challenge Project of the Ministry of Land, Infrastructure and Transport in June 2019 to measure the perceived technology acceptance of potential users for the AI technology for the elderly living alone as part of the smart city technology. In order to evaluate the intention of using AI speaker, which is the target system of this study, a video of a chatbot using experience of elderly people living alone was produced. Results: First of all, in order for the elderly living alone to have an attitude to use AI-based speakers, there should be a perceived usefulness of the quality of life of the elderly. However, ease of use did not show any significant causal relationship to attitude toward use. In addition, the attitude toward use weakly influenced the intention to use. In other words, elderly people living alone were not likely to have a significant effect on their attitude toward use. However, feeling that AI speakers are easy to use will help to improve the quality of life, which in turn led to the attitude toward using AI speakers, which could lead to indirect effects. Finally, the perceived usefulness of quality of life was found to have a weak effect on direct use intentions. Conclusions: This study conducted a study on the technology acceptance of service environment to improve the quality of life for the specific user group who live alone in the smart seat environment. In this study, we examined the effects of AI speaker on the elderly living alone to improve the quality of life for the elderly living alone.

The Role and Effect of Artificial Intelligence (AI) on the Platform Service Innovation: The Case Study of Kakao in Korea (플랫폼 서비스 혁신에 있어 인공지능(AI)의 역할과 효과에 관한 연구: 카카오 그룹의 인공지능 활용 사례 연구)

  • Lee, Kyoung-Joo;Kim, Eun-Young
    • Knowledge Management Research
    • /
    • v.21 no.1
    • /
    • pp.175-195
    • /
    • 2020
  • The development of platform service based on the information and communication technology has revolutionized patterns of commercial transactions, driving the growth of global economy. Furthermore, the radical advancement of artificial intelligence(AI) presents the huge potential to innovate almost all the industrial and economic activities. Given these technological developments, the goal of this paper is to investigate AI's impact on the platform service innovation as well as its influence on the business performance. For the goal, this paper presents the review of the types of service innovation, the nature of platform services, and technological characteristics of leading AI technologies, such as chatbot and recommendation system. As an empirical study, this paper performs a multiple case study of Kakao Group which is the leading mobile platform service with the most advanced AI in Korea. To understand the role and effect of AI on Kakao platform service, this study investigated three cases, including chatbot agent of Kakao Bank, Smart Call service of Kakao Taxi, and music recommendation system of Kakao Mellon. The analysis results of the case study show that AI initiated innovations in platform service concepts, service delivery, and customer interface, all of which lead to a significant decrease in the transaction costs and the personalization of services. Finally, for the successful development of AI, this research emphasizes the significance of the accumulation of customer and operational data, the AI human capital, and the design of R&D organization.

A Study on the Satisfaction Analysis of Smart Traffic Safety Systems using Importance-Performance Analysis (IPA를 이용한 스마트 교통안전 시스템의 만족도 분석 연구)

  • Kiman Hong;Jonghoon Kim;Jungah Ha;Gwangho Kim;Jonghoon Kim
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.754-768
    • /
    • 2022
  • Purpose: The purpose of this study is to derive improvements through user satisfaction analysis for the smart traffic safety system being applied to improve traffic safety. Method: A survey-based IPA analysis was used to derive system and service improvements for groups of drivers and pedestrians. Result: As a result of the analysis, both drivers and pedestrian groups showed that Quadrant 1(Keep up the Good Work) was 'Perception of risk information', and Quadrant 3(Low Priority) was 'Reliability of warning information'. On the other hand, 'AI display suitability', which was analyzed as Quadrant 1(Keep up the Good Work) in the driver group, was found to be Quadrant 3(Low priority) in the pedestrian group. Conclusion: Satisfaction factors for smart pedestrian safety systems may vary depending on users, and it is judged that user-centered system construction and service provision are necessary.

A Study on the Interconnection between National Disaster Management System and Private Disaster Prevention IT Technology through Application (국가재난관리 시스템과 민간 방재IT기술의 지능정보기술 적용 사례고찰을 통한 상호 연계에 관한 연구)

  • Kim, Jaepyo;Kim, Seungcheon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.15-22
    • /
    • 2020
  • In order to strengthen the disaster prevention phase and the management of social disasters, we will examine the plan of To-Be disaster management system interconnected by using intelligent information technologies such as IoT, Cloud, Big Data, Mobile and AI. The disaster management system can be upgraded by constructing an intelligent infrastructure based on Big Data analysis of the disaster signals before and after the disasters generated by private mobile and IoT. Big Data of disaster Signals can be customized to users in a timely manner through AI methodologies of supervised and unsupervised learning and reinforcement training. In the long term, it is expected that not only will the capacity of disaster response be improved, but the management ability centering on prevention will be enhanced as well.

SAR Recognition of Target Variants Using Channel Attention Network without Dimensionality Reduction (차원축소 없는 채널집중 네트워크를 이용한 SAR 변형표적 식별)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • In implementing a robust automatic target recognition(ATR) system with synthetic aperture radar(SAR) imagery, one of the most important issues is accurate classification of target variants, which are the same targets with different serial numbers, configurations and versions, etc. In this paper, a deep learning network with channel attention modules is proposed to cope with the recognition problem for target variants based on the previous research findings that the channel attention mechanism selectively emphasizes the useful features for target recognition. Different from other existing attention methods, this paper employs the channel attention modules without dimensionality reduction along the channel direction from which direct correspondence between feature map channels can be preserved and the features valuable for recognizing SAR target variants can be effectively derived. Experiments with the public benchmark dataset demonstrate that the proposed scheme is superior to the network with other existing channel attention modules.

AI based control theory for interaction of ocean system

  • Chen, C.Y.J.;Hsieh, Chia-Yen;Smith, Aiden;Alako, Dariush;Pandey, Lallit;Chen, Tim
    • Ocean Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.227-241
    • /
    • 2020
  • This paper deals with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems. Problem and objective: Based on the relaxed method, the chaotic system can be stabilized by regulating appropriately the parameters of dither. Scope and method: If the frequency of dither is high enough, the trajectory of the closed-loop dithered chaotic system and that of its corresponding model-the closed-loop fuzzy relaxed system can be made as close as desired. Results and conclusion: The behavior of the closed-loop dithered chaotic system can be rigorously predicted by establishing that of the closed-loop fuzzy relaxed system.

Trends in Disaster Prediction Technology Development and Service Delivery (재난예측 기술 개발 및 서비스 제공 동향)

  • Park, Soyoung;Hong, Sanggi;Lee, Kangbok
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.80-88
    • /
    • 2020
  • This paper describes the development trends and service provision examples of disaster occurrence and spread prediction technology for various disasters such as tsunamis, floods, and fires. In terms of fires, we introduce the WIFIRE system, which predicts the spread of large forest fires in the United States, and the Metro21: Smart Cities Institute project, which predicts the risk of building fires. This paper describes the development trends in tsunami prediction technology in the United States and Japan using artificial intelligence (AI) to predict the occurrence and size of tsunamis that cause great damage to coastal cities in Japan, Indonesia, and the United States. In addition, it introduces the NOAA big data platform built for natural disaster prediction, considering that the use of big data is very important for AI-based disaster prediction. In addition, Google's flood forecasting system, domestic and overseas earthquake early warning system development, and service delivery cases will be introduced.

A reliable intelligent diagnostic assistant for nuclear power plants using explainable artificial intelligence of GRU-AE, LightGBM and SHAP

  • Park, Ji Hun;Jo, Hye Seon;Lee, Sang Hyun;Oh, Sang Won;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1271-1287
    • /
    • 2022
  • When abnormal operating conditions occur in nuclear power plants, operators must identify the occurrence cause and implement the necessary mitigation measures. Accordingly, the operator must rapidly and accurately analyze the symptom requirements of more than 200 abnormal scenarios from the trends of many variables to perform diagnostic tasks and implement mitigation actions rapidly. However, the probability of human error increases owing to the characteristics of the diagnostic tasks performed by the operator. Researches regarding diagnostic tasks based on Artificial Intelligence (AI) have been conducted recently to reduce the likelihood of human errors; however, reliability issues due to the black box characteristics of AI have been pointed out. Hence, the application of eXplainable Artificial Intelligence (XAI), which can provide AI diagnostic evidence for operators, is considered. In conclusion, the XAI to solve the reliability problem of AI is included in the AI-based diagnostic algorithm. A reliable intelligent diagnostic assistant based on a merged diagnostic algorithm, in the form of an operator support system, is developed, and includes an interface to efficiently inform operators.

Learning Algorithms in AI System and Services

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1029-1035
    • /
    • 2019
  • In recent years, artificial intelligence (AI) services have become one of the most essential parts to extend human capabilities in various fields such as face recognition for security, weather prediction, and so on. Various learning algorithms for existing AI services are utilized, such as classification, regression, and deep learning, to increase accuracy and efficiency for humans. Nonetheless, these services face many challenges such as fake news spread on social media, stock selection, and volatility delay in stock prediction systems and inaccurate movie-based recommendation systems. In this paper, various algorithms are presented to mitigate these issues in different systems and services. Convolutional neural network algorithms are used for detecting fake news in Korean language with a Word-Embedded model. It is based on k-clique and data mining and increased accuracy in personalized recommendation-based services stock selection and volatility delay in stock prediction. Other algorithms like multi-level fusion processing address problems of lack of real-time database.

An Efficiency Analysis of an Artificial Intelligence Medical Image Analysis Software System : Focusing on the Time Behavior of ISO/IEC 25023 Software Quality Requirements (인공지능 기술 기반의 의료영상 판독 보조 시스템의 효율성 분석 : ISO/IEC 25023 소프트웨어 품질 요구사항의 Time Behavior를 중심으로)

  • Chang-Hwa Han;Young-Hwang Jeon;Jae-Bok Han;Jong-Nam Song
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.939-945
    • /
    • 2023
  • This study analyzes the 'performance efficiency' of AI-based reading assistance systems in the field of radiology by measuring their 'time behavior' properties. Due to the increase in medical images and the limited number of radiologists, the adoption of AI-based solutions is escalating, stimulating a multitude of studies in this area. Contrary to the majority of past research which centered on AI's diagnostic precision, this study underlines the significance of time behavior. Using 50 chest X-ray PA images, the system processed images in an average of 15.24 seconds, demonstrating high consistency and reliability, which is on par with leading global AI platforms, suggesting the potential for significant improvements in radiology workflow efficiency. We expect AI technology to play a large role in the field of radiology and help improve overall healthcare quality and efficiency.