• Title/Summary/Keyword: AI learning data

Search Result 794, Processing Time 0.027 seconds

A Study on Conversational AI Agent based on Continual Learning

  • Chae-Lim, Park;So-Yeop, Yoo;Ok-Ran, Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.27-38
    • /
    • 2023
  • In this paper, we propose a conversational AI agent based on continual learning that can continuously learn and grow with new data over time. A continual learning-based conversational AI agent consists of three main components: Task manager, User attribute extraction, and Auto-growing knowledge graph. When a task manager finds new data during a conversation with a user, it creates a new task with previously learned knowledge. The user attribute extraction model extracts the user's characteristics from the new task, and the auto-growing knowledge graph continuously learns the new external knowledge. Unlike the existing conversational AI agents that learned based on a limited dataset, our proposed method enables conversations based on continuous user attribute learning and knowledge learning. A conversational AI agent with continual learning technology can respond personally as conversations with users accumulate. And it can respond to new knowledge continuously. This paper validate the possibility of our proposed method through experiments on performance changes in dialogue generation models over time.

A Study on Detection of Abnormal Patterns Based on AI·IoT to Support Environmental Management of Architectural Spaces (건축공간 환경관리 지원을 위한 AI·IoT 기반 이상패턴 검출에 관한 연구)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.12-20
    • /
    • 2023
  • Deep learning-based anomaly detection technology is used in various fields such as computer vision, speech recognition, and natural language processing. In particular, this technology is applied in various fields such as monitoring manufacturing equipment abnormalities, detecting financial fraud, detecting network hacking, and detecting anomalies in medical images. However, in the field of construction and architecture, research on deep learning-based data anomaly detection technology is difficult due to the lack of digitization of domain knowledge due to late digital conversion, lack of learning data, and difficulties in collecting and processing field data in real time. This study acquires necessary data through IoT (Internet of Things) from the viewpoint of monitoring for environmental management of architectural spaces, converts them into a database, learns deep learning, and then supports anomaly patterns using AI (Artificial Infelligence) deep learning-based anomaly detection. We propose an implementation process. The results of this study suggest an effective environmental anomaly pattern detection solution architecture for environmental management of architectural spaces, proving its feasibility. The proposed method enables quick response through real-time data processing and analysis collected from IoT. In order to confirm the effectiveness of the proposed method, performance analysis is performed through prototype implementation to derive the results.

ETRI AI Strategy #1: Proactively Securing AI Core Technologies (ETRI AI 실행전략 1: 인공지능 핵심기술 선제적 확보)

  • Kim, S.M.;Yeon, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.7
    • /
    • pp.3-12
    • /
    • 2020
  • In this paper, we introduce ETRI AI Strategy #1, "Proactively Securing AI Core Technologies." The first goal of this strategy is to innovate artificial intelligence (AI) service technology to overcome the current limitations of AI technologies. Even though we saw a big jump in AI technology development recently due to the rise of deep learning (DL), DL still has technical limitations and problems. This paper introduces the four major parts of the advanced AI technologies that ETRI will secure to overcome the problems of DL and harmonize AI with the human world: post DL technology, human-AI collaboration technology, intelligence for autonomous things, and big data platform technology.

A TabNet - Based System for Water Quality Prediction in Aquaculture

  • Nguyen, Trong–Nghia;Kim, Soo Hyung;Do, Nhu-Tai;Hong, Thai-Thi Ngoc;Yang, Hyung Jeong;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.39-52
    • /
    • 2022
  • In the context of the evolution of automation and intelligence, deep learning and machine learning algorithms have been widely applied in aquaculture in recent years, providing new opportunities for the digital realization of aquaculture. Especially, water quality management deserves attention thanks to its importance to food organisms. In this study, we proposed an end-to-end deep learning-based TabNet model for water quality prediction. From major indexes of water quality assessment, we applied novel deep learning techniques and machine learning algorithms in innovative fish aquaculture to predict the number of water cells counting. Furthermore, the application of deep learning in aquaculture is outlined, and the obtained results are analyzed. The experiment on in-house data showed an optimistic impact on the application of artificial intelligence in aquaculture, helping to reduce costs and time and increase efficiency in the farming process.

Perceptions of preservice teachers on AI chatbots in English education

  • Yang, Jaeseok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.44-52
    • /
    • 2022
  • With recent scientific advances and growing interest in AI technologies, AI-based chatbots have been viewed as a practical learning aid for English language development. The purpose of this study is to examine preservice teachers' perceptions on the potential benefits of employing AI chatbots in English instruction and its pedagogical aspects. 28 preservice teachers majoring in English education were asked to use Kuki chatbots for a week with a guidance of a researcher and then report on their perceptions of AI chatbots in terms of perceived usefulness after use, applicability, and educational benefits and drawbacks. Emerging codes and themes were identified and evaluated using Thematic Analysis(TA) based on qualitative data from surveys and interviews. The findings show that six emerging themes were identified, encompassing perspectives on teacher, learner, communication, linguistic, affective, and assessment. The overall findings of this study revealed that AI-based chatbots can play a significant role as learning tools for stimulating interactive communication in a target language. Most preservice primary teachers acknowledge that AI chatbots can be useful as teaching and learning aids for both teachers and students. Furthermore, when applying various learner data to chatbot technology, such as learner assessment and diagnosis, a guided approach is necessary to perform a conversation appropriate for the learner's level and characteristics. Finally, as chatbots have a variety of benefits in terms of affective aspects, they may improve EFL learners' confidence in speaking English and learning motivation.

Guideline on Security Measures and Implementation of Power System Utilizing AI Technology (인공지능을 적용한 전력 시스템을 위한 보안 가이드라인)

  • Choi, Inji;Jang, Minhae;Choi, Moonsuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.399-404
    • /
    • 2020
  • There are many attempts to apply AI technology to diagnose facilities or improve the work efficiency of the power industry. The emergence of new machine learning technologies, such as deep learning, is accelerating the digital transformation of the power sector. The problem is that traditional power systems face security risks when adopting state-of-the-art AI systems. This adoption has convergence characteristics and reveals new cybersecurity threats and vulnerabilities to the power system. This paper deals with the security measures and implementations of the power system using machine learning. Through building a commercial facility operations forecasting system using machine learning technology utilizing power big data, this paper identifies and addresses security vulnerabilities that must compensated to protect customer information and power system safety. Furthermore, it provides security guidelines by generalizing security measures to be considered when applying AI.

Resource Metric Refining Module for AIOps Learning Data in Kubernetes Microservice

  • Jonghwan Park;Jaegi Son;Dongmin Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1545-1559
    • /
    • 2023
  • In the cloud environment, microservices are implemented through Kubernetes, and these services can be expanded or reduced through the autoscaling function under Kubernetes, depending on the service request or resource usage. However, the increase in the number of nodes or distributed microservices in Kubernetes and the unpredictable autoscaling function make it very difficult for system administrators to conduct operations. Artificial Intelligence for IT Operations (AIOps) supports resource management for cloud services through AI and has attracted attention as a solution to these problems. For example, after the AI model learns the metric or log data collected in the microservice units, failures can be inferred by predicting the resources in future data. However, it is difficult to construct data sets for generating learning models because many microservices used for autoscaling generate different metrics or logs in the same timestamp. In this study, we propose a cloud data refining module and structure that collects metric or log data in a microservice environment implemented by Kubernetes; and arranges it into computing resources corresponding to each service so that AI models can learn and analogize service-specific failures. We obtained Kubernetes-based AIOps learning data through this module, and after learning the built dataset through the AI model, we verified the prediction result through the differences between the obtained and actual data.

Deep Learning for Remote Sensing Applications (원격탐사활용을 위한 딥러닝기술)

  • Lee, Moung-Jin;Lee, Won-Jin;Lee, Seung-Kuk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1581-1587
    • /
    • 2022
  • Recently, deep learning has become more important in remote sensing data processing. Huge amounts of data for artificial intelligence (AI) has been designed and built to develop new technologies for remote sensing, and AI models have been learned by the AI training dataset. Artificial intelligence models have developed rapidly, and model accuracy is increasing accordingly. However, there are variations in the model accuracy depending on the person who trains the AI model. Eventually, experts who can train AI models well are required more and more. Moreover, the deep learning technique enables us to automate methods for remote sensing applications. Methods having the performance of less than about 60% in the past are now over 90% and entering about 100%. In this special issue, thirteen papers on how deep learning techniques are used for remote sensing applications will be introduced.

Verification of the effectiveness of AI education for Non-majors through PJBL-based data analysis (PJBL기반 데이터 분석을 통한 비전공자의 AI 교육 효과성 검증)

  • Baek, Su-Jin;Park, So-Hyun
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.201-207
    • /
    • 2021
  • As artificial intelligence gradually expands into jobs, iIt is necessary to nurture talents with AI literacy capabilities required for non-majors. Therefore, in this study, based on the necessity and current status of AI education, AI literacy competency improvement education was conducted for non-majors so that AI learning could be sustainable in relation to future majors. For non-majors at University D, problem-solving solutions through project-based data analysis and visualization were applied over 15 weeks, and the AI ability improvement and effectiveness of learners before and after education were analyzed and verified. As a result, it was possible to confirm a statistically significant level of positive change in the learners' data analysis and utilization ability, AI literacy ability, and AI self-efficacy. In particular, it not only improved the learners' ability to directly utilize public data to analyze and visualize it, but also improved their self-efficacy to solve problems by linking this with the use of AI.

Performance Comparison Analysis of AI Supervised Learning Methods of Tensorflow and Scikit-Learn in the Writing Digit Data (필기숫자 데이터에 대한 텐서플로우와 사이킷런의 인공지능 지도학습 방식의 성능비교 분석)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.701-706
    • /
    • 2019
  • The advent of the AI(: Artificial Intelligence) has applied to many industrial and general applications have havingact on our lives these days. Various types of machine learning methods are supported in this field. The supervised learning method of the machine learning has features and targets as an input in the learning process. There are many supervised learning methods as well and their performance varies depends on the characteristics and states of the big data type as an input data. Therefore, in this paper, in order to compare the performance of the various supervised learning method with a specific big data set, the supervised learning methods supported in the Tensorflow and the Sckit-Learn are simulated and analyzed in the Jupyter Notebook environment with python.