• Title/Summary/Keyword: AI learning data

Search Result 782, Processing Time 0.058 seconds

Blockchain Based Data-Preserving AI Learning Environment Model for Cyber Security System (AI 사이버보안 체계를 위한 블록체인 기반의 Data-Preserving AI 학습환경 모델)

  • Kim, Inkyung;Park, Namje
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.12
    • /
    • pp.125-134
    • /
    • 2019
  • As the limitations of the passive recognition domain, which is not guaranteed transparency of the operation process, AI technology has a vulnerability that depends on the data. Human error is inherent because raw data for artificial intelligence learning must be processed and inspected manually to secure data quality for the advancement of AI learning. In this study, we examine the necessity of learning data management before machine learning by analyzing inaccurate cases of AI learning data and cyber security attack method through the approach from cyber security perspective. In order to verify the learning data integrity, this paper presents the direction of data-preserving artificial intelligence system, a blockchain-based learning data environment model. The proposed method is expected to prevent the threats such as cyber attack and data corruption in providing and using data in the open network for data processing and raw data collection.

A Study on Cathodic Protection Rectifier Control of City Gas Pipes using Deep Learning (딥러닝을 활용한 도시가스배관의 전기방식(Cathodic Protection) 정류기 제어에 관한 연구)

  • Hyung-Min Lee;Gun-Tek Lim;Guy-Sun Cho
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.49-56
    • /
    • 2023
  • As AI (Artificial Intelligence)-related technologies are highly developed due to the 4th industrial revolution, cases of applying AI in various fields are increasing. The main reason is that there are practical limits to direct processing and analysis of exponentially increasing data as information and communication technology develops, and the risk of human error can be reduced by applying new technologies. In this study, after collecting the data received from the 'remote potential measurement terminal (T/B, Test Box)' and the output of the 'remote rectifier' at that time, AI was trained. AI learning data was obtained through data augmentation through regression analysis of the initially collected data, and the learning model applied the value-based Q-Learning model among deep reinforcement learning (DRL) algorithms. did The AI that has completed data learning is put into the actual city gas supply area, and based on the received remote T/B data, it is verified that the AI responds appropriately, and through this, AI can be used as a suitable means for electricity management in the future. want to verify.

Artificial intelligence, machine learning, and deep learning in women's health nursing

  • Jeong, Geum Hee
    • Women's Health Nursing
    • /
    • v.26 no.1
    • /
    • pp.5-9
    • /
    • 2020
  • Artificial intelligence (AI), which includes machine learning and deep learning has been introduced to nursing care in recent years. The present study reviews the following topics: the concepts of AI, machine learning, and deep learning; examples of AI-based nursing research; the necessity of education on AI in nursing schools; and the areas of nursing care where AI is useful. AI refers to an intelligent system consisting not of a human, but a machine. Machine learning refers to computers' ability to learn without being explicitly programmed. Deep learning is a subset of machine learning that uses artificial neural networks consisting of multiple hidden layers. It is suggested that the educational curriculum should include big data, the concept of AI, algorithms and models of machine learning, the model of deep learning, and coding practice. The standard curriculum should be organized by the nursing society. An example of an area of nursing care where AI is useful is prenatal nursing interventions based on pregnant women's nursing records and AI-based prediction of the risk of delivery according to pregnant women's age. Nurses should be able to cope with the rapidly developing environment of nursing care influenced by AI and should understand how to apply AI in their field. It is time for Korean nurses to take steps to become familiar with AI in their research, education, and practice.

Method for improving video/image data quality for AI learning of unstructured data (비정형데이터의 AI학습을 위한 영상/이미지 데이터 품질 향상 방법)

  • Kim Seung Hee;Dongju Ryu
    • Convergence Security Journal
    • /
    • v.23 no.2
    • /
    • pp.55-66
    • /
    • 2023
  • Recently, there is an increasing movement to increase the value of AI learning data and to secure high-quality data based on previous research on AI learning data in all areas of society. Therefore, quality management is very important in construction projects to secure high-quality data. In this paper, quality management to secure high-quality data when building AI learning data and improvement plans for each construction process are presented. In particular, more than 80% of the data quality of unstructured data built for AI learning is determined during the construction process. In this paper, we performed quality inspection of image/video data. In addition, we identified inspection procedures and problem elements that occurred in the construction phases of acquisition, data cleaning, labeling, and models, and suggested ways to secure high-quality data by solving them. Through this, it is expected that it will be an alternative to overcome the quality deviation of data for research groups and operators participating in the construction of AI learning data.

A Study on Factors Influencing AI Learning Continuity : Focused on Business Major Students

  • Park, So Hyun
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.189-210
    • /
    • 2023
  • Purpose This study aims to investigate factors that positively influence the continuous Artificial Intelligence(AI) Learning Continuity of business major students. Design/methodology/approach To evaluate the impact of AI education, a survey was conducted among 119 business-related majors who completed a software/AI course. Frequency analysis was employed to examine the general characteristics of the sample. Furthermore, factor analysis using Varimax rotation was conducted to validate the derived variables from the survey items, and Cronbach's α coefficient was used to measure the reliability of the variables. Findings Positive correlations were observed between business major students' AI Learning Continuity and their AI Interest, AI Awareness, and Data Analysis Capability related to their majors. Additionally, the study identified that AI Project Awareness and AI Literacy Capability play pivotal roles as mediators in fostering AI Learning Continuity. Students who acquired problem-solving skills and related technologies through AI Projects Awareness showed increased motivation for AI Learning Continuity. Lastly, AI Self-Efficacy significantly influences students' AI Learning Continuity.

Deep Analysis of Causal AI-Based Data Analysis Techniques for the Status Evaluation of Casual AI Technology (인과적 인공지능 기반 데이터 분석 기법의 심층 분석을 통한 인과적 AI 기술의 현황 분석)

  • Cha Jooho;Ryu Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.45-52
    • /
    • 2023
  • With the advent of deep learning, Artificial Intelligence (AI) technology has experienced rapid advancements, extending its application across various industrial sectors. However, the focus has shifted from the independent use of AI technology to its dispersion and proliferation through the open AI ecosystem. This shift signifies the transition from a phase of research and development to an era where AI technology is becoming widely accessible to the general public. However, as this dispersion continues, there is an increasing demand for the verification of outcomes derived from AI technologies. Causal AI applies the traditional concept of causal inference to AI, allowing not only the analysis of data correlations but also the derivation of the causes of the results, thereby obtaining the optimal output values. Causal AI technology addresses these limitations by applying the theory of causal inference to machine learning and deep learning to derive the basis of the analysis results. This paper analyzes recent cases of causal AI technology and presents the major tasks and directions of causal AI, extracting patterns between data using the correlation between them and presenting the results of the analysis.

A Model for Constructing Learner Data in AI-based Mathematical Digital Textbooks for Individual Customized Learning (개별 맞춤형 학습을 위한 인공지능(AI) 기반 수학 디지털교과서의 학습자 데이터 구축 모델)

  • Lee, Hwayoung
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.333-348
    • /
    • 2023
  • Clear analysis and diagnosis of various characteristic factors of individual students is the most important in order to realize individual customized teaching and learning, which is considered the most essential function of math artificial intelligence-based digital textbooks. In this study, analysis factors and tools for individual customized learning diagnosis and construction models for data collection and analysis were derived from mathematical AI digital textbooks. To this end, according to the Ministry of Education's recent plan to apply AI digital textbooks, the demand for AI digital textbooks in mathematics, personalized learning and prior research on data for it, and factors for learner analysis in mathematics digital platforms were reviewed. As a result of the study, the researcher summarized the factors for learning analysis as factors for learning readiness, process and performance, achievement, weakness, and propensity analysis as factors for learning duration, problem solving time, concentration, math learning habits, and emotional analysis as factors for confidence, interest, anxiety, learning motivation, value perception, and attitude analysis as factors for learning analysis. In addition, the researcher proposed noon data on the problem, learning progress rate, screen recording data on student activities, event data, eye tracking device, and self-response questionnaires as data collection tools for these factors. Finally, a data collection model was proposed that time-series these factors before, during, and after learning.

A Survey on Deep Learning-based Analysis for Education Data (빅데이터와 AI를 활용한 교육용 자료의 분석에 대한 조사)

  • Lho, Young-uhg
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.240-243
    • /
    • 2021
  • Recently, there have been research results of applying Big data and AI technologies to the evaluation and individual learning for education. It is information technology innovations that collect dynamic and complex data, including student personal records, physiological data, learning logs and activities, learning outcomes and outcomes from social media, MOOCs, intelligent tutoring systems, LMSs, sensors, and mobile devices. In addition, e-learning was generated a large amount of learning data in the COVID-19 environment. It is expected that learning analysis and AI technology will be applied to extract meaningful patterns and discover knowledge from this data. On the learner's perspective, it is necessary to identify student learning and emotional behavior patterns and profiles, improve evaluation and evaluation methods, predict individual student learning outcomes or dropout, and research on adaptive systems for personalized support. This study aims to contribute to research in the field of education by researching and classifying machine learning technologies used in anomaly detection and recommendation systems for educational data.

  • PDF

Validation of the effectiveness of AI-Based Personalized Adaptive Learning: Focusing on basic math class cases (인공지능(AI) 기반 맞춤형 학습의 효과검증: 기초 수학수업 사례 중심으로)

  • Eunae Burm;Yeol-Eo Chun;Ji Youn Han
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.35-43
    • /
    • 2023
  • This study tried to find out the applicability and effectiveness of the AI-based adaptive learning system in university classes by operating an AI-based adaptive learning system on a pilot basis. To this end, an AI-based adaptive learning system was applied to analyze the operation results of 42 learners who participated in basic mathematics classes, and a survey and in-depth interviews were conducted with students and professors. As a result of the study, the use of an AI-based customized learning system improved students' academic achievement. Both instructors and learners seem to contribute to improving learning performance in basic concept learning, and through this, the AI-based adaptive learning system is expected to be an effective way to enhance self-directed learning and strengthen knowledge through concept learning. It is expected to be used as basic data related to the introduction and application of basic science subjects for AI-based adaptive learning systems. In the future, we suggest a strategy study on how to use the analyzed data and to verify the effect of linking the learning process and analyzed data provided to students in AI-based customized learning to face-to-face classes.

Learning Method of Data Bias employing MachineLearningforKids: Case of AI Baseball Umpire (머신러닝포키즈를 활용한 데이터 편향 인식 학습: AI야구심판 사례)

  • Kim, Hyo-eun
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.4
    • /
    • pp.273-284
    • /
    • 2022
  • The goal of this paper is to propose the use of machine learning platforms in education to train learners to recognize data biases. Learners can cultivate the ability to recognize when learners deal with AI data and systems when they want to prevent damage caused by data bias. Specifically, this paper presents a method of data bias education using MachineLearningforKids, focusing on the case of AI baseball referee. Learners take the steps of selecting a specific topic, reviewing prior research, inputting biased/unbiased data on a machine learning platform, composing test data, comparing the results of machine learning, and present implications. Learners can learn that AI data bias should be minimized and the impact of data collection and selection on society. This learning method has the significance of promoting the ease of problem-based self-directed learning, the possibility of combining with coding education, and the combination of humanities and social topics with artificial intelligence literacy.