• 제목/요약/키워드: AI image analysis

검색결과 184건 처리시간 0.024초

제조 시계열 데이터를 위한 진화 연산 기반의 하이브리드 클러스터링 기법 (Evolutionary Computation-based Hybird Clustring Technique for Manufacuring Time Series Data)

  • 오상헌;안창욱
    • 스마트미디어저널
    • /
    • 제10권3호
    • /
    • pp.23-30
    • /
    • 2021
  • 제조 시계열 데이터 클러스터링 기법은 제조 대용량 데이터 기반 군집화를 통한 설비 및 공정 이상 탐지 분류를 위한 중요한 솔루션이지만 기존 정적 데이터 대상 클러스터링 기법을 시계열 데이터에 적용함에 있어 낮은 정확도를 가지는 단점이 있다. 본 논문에서는 진화 연산 기반 시계열 군집 분석 접근 방식을 제시하여 기존 클러스터링 기술에 대한 정합성 향상하고자 한다. 이를 위하여 먼저 제조 공정 결과 이미지 형상을 선형 스캐닝을 활용하여 1차원 시계열 데이터로 변환하고 해당 변환 데이터 대상으로 Pearson 거리 매트릭을 기반으로 계층적 군집 분석 및 분할 군집 분석에 대한 최적 하위클러스터를 도출한다. 해당 최적 하위클러스터 대상 유전 알고리즘을 활용하여 유사도가 최소화되는 최적의 군집 조합을 도출한다. 그리고 실제 제조 과정 이미지 대상으로 기존 클러스터링 기법과 성능 비교를 통하여 제안된 클러스터링 기법의 성능 우수성을 검증한다.

셀피의 의미연결망 분석과 AR 카메라 앱 사용이 외모만족도와 자아존중감에 미치는 영향 (Effects of selfie semantic network analysis and AR camera app use on appearance satisfaction and self-esteem)

  • 이현정
    • 복식문화연구
    • /
    • 제30권5호
    • /
    • pp.766-778
    • /
    • 2022
  • Image-oriented information is becoming increasingly important on social networking services (SNS); the background of this trend is the popularity of selfies. Currently, camera applications using augmented reality (AR) and artificial intelligence (AI) technologies are gaining traction. An AR camera app is a smartphone application that converts selfies into various interesting forms using filters. In this study, we investigated the change of keywords according to the time flow of selfies in Goolgle News articles through semantic network analysis. Additionally, we examined the effects of using an AR camera app on appearance satisfaction and self-esteem when taking a selfie. Semantic network analysis revealed that in 2013, postings of specific people were the most prominent selfie-related keywords. In 2019, keywords appeared regarding the launch of a new smartphone with a rear-facing camera for selfies; in 2020, keywords related to communication through selfies appeared. As a result of examining the effect of the degree of use of the AR camera app on appearance satisfaction, it was found that the higher the degree of use, the higher the user's interest in appearance. As a result of examining the effect of the degree of use of the AR camera app on self-esteem, it was found that the higher the degree of use, the higher the user's negative self-esteem.

아쿠아포닉스 환경에서의 작물 면적 데이터 AI 분석 연구 (A Study on the AI Analysis of Crop Area Data in Aquaponics)

  • 최은영;이현섭;차주형;이임건
    • 문화기술의 융합
    • /
    • 제9권3호
    • /
    • pp.861-866
    • /
    • 2023
  • 화학비료와 넓은 공간이 있어야 하는 기존의 스마트팜과 달리, 수생생물과 작물간의 공생 관계를 활용하여 환경오염 및 기후 변화 등의 비정상적인 환경에서도 작물 재배가 가능한 아쿠아포닉스 농법이 활발하게 연구되고 있다. 해당 농법은 작물마다 생장에 필요한 환경과 영양분이 다르므로, 생장에 최적화된 수생생물 비율을 구성이 필요하다. 본 연구는 아쿠아포닉스 환경에 영상처리 기법을 활용하여 면적과 부피를 기준으로 생육 정도를 측정하는 방법을 제안한다. 배설물을 통해 유기물 생성하는 여러 종류의 민물고기와 상추 작물을 아쿠아포닉스 환경에 생육을 통해 검증하였다. 상추의 2D와 3D 영상 분석과 실시간 데이터 분석을 통해 상추의 면적 및 부피 정보를 활용하여 생장 정도를 평가하였다. 실험 결과, 상추의 면적과 부피 정보를 활용하여 재배관리가 가능하다는 것을 입증하였다. 수생생물과 생육 정보를 활용하여 농업인에게 생산 예측 서비스 제공과,변화하는 농업 환경에서의 문제점을 해결하는 시작점이 되어줄 것으로 보인다.

딥 러닝 프레임워크의 비교 및 분석 (A Comparison and Analysis of Deep Learning Framework)

  • 이요섭;문필주
    • 한국전자통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.115-122
    • /
    • 2017
  • 딥 러닝은 사람이 가르치지 않아도 컴퓨터가 스스로 사람처럼 학습할 수 있는 인공지능 기술이다. 딥 러닝은 세상을 이해하고 감지하는 인공지능을 개발하는데 가장 촉망받는 기술이 되고 있으며, 구글, 바이두, 페이스북 등이 가장 앞서서 개발을 하고 있다. 본 논문에서는 딥 러닝을 구현하는 딥 러닝 프레임워크의 종류에 대해 논의하고, 딥 러닝 프레임워크의 영상과 음성 인식 분야의 효율성에 대해 비교, 분석하고자 한다.

로봇 저널리즘 연구 동향 및 미래 전망 (Robot Journalism Research Trends and Future Prospects)

  • Cui, Jian-Dong;Song, Seung-keun
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.333-336
    • /
    • 2020
  • AI-powered robot news is drawing attention as artificial intelligence technology is fully spread in the news distribution field. Robot news still has many technical and ethical problems, but academic research on this is insufficient. This study analyzes the issue of robot writing in artificial intelligent based robot journalism industry using SWOT analysis. As a result, the advantages of big data processes, accurate information gathering, high efficiency and disadvantages such as lack of independent arguments and lack of evidence and opportunities for technical development, government support, academic development, and industrial applications, and threats such as uncritical acceptance and lack of talent have been found. This study suggests three future-oriented directions, such as human-machine collaboration, intelligent news, and chat-bot, through previous studies on the development direction of robot journalism-based article writing.

진로변경 위반 영상 분석을 위한 객체 인식 방법 (Object Detection Method for Developing a Path Change Violation Image Analysis System)

  • 최민성;최봉준;문미경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.499-500
    • /
    • 2022
  • 차량용 블랙박스의 대중화와 '스마트 국민 제보' 애플리케이션 도입에 따른 영향으로 교통법규 위반 공익신고 건수가 급증하면서 대응해야 할 담당 경찰 인력이 부족한 상황이다. 이러한 인력 부족 문제를 해결하기 위해서 인공지능(AI) 알고리즘을 활용하여 신고된 영상의 위법 여부를 자동으로 분석할 필요가 있다. 본 논문에서는 공익신고의 대부분을 차지하고 있는 진로변경 위반 영상 분석을 위한 객체 인식 방법에 대한 연구 내용을 기술한다. 이 연구에서는 딥러닝 알고리즘과 컴퓨터 비전 알고리즘을 통해 진로변경 위반 분석에 필요한 차량과 실선 객체를 인식하여 진로변경 위반 영상 분석에 활용할 수 있도록 한다.

  • PDF

도시공원 운영 및 관리를 위한 VQA 딥러닝 기술 활용 연구 - SNS 이미지 분석을 중심으로 - (Study of the Application of VQA Deep Learning Technology to the Operation and Management of Urban Parks - Analysis of SNS Images -)

  • 이다연;박서은;이재호
    • 한국조경학회지
    • /
    • 제51권5호
    • /
    • pp.44-56
    • /
    • 2023
  • 본 연구는 공원 이용자의 수요 변화에 맞춰 공원 운영 및 관리를 개선하기 위한 연구이다. 과거 공원 이용 수요에 관한 조사와 분석은 설문조사에 의존해왔으나, 최근에는 공원 이용 트렌드 및 이용자의 활동을 다각도로 파악할 수 있는 소셜미디어 데이터를 적극적으로 활용하고 있다. 하지만 이러한 연구들은 소셜미디어 데이터 중 텍스트 데이터에만 집중되어 있어 이미지 데이터에 담겨있는 정보를 얻기는 부족한 실정이다. 따라서 본 연구는 소셜미디어 이미지 데이터를 이용하여 공원 이용 특성 분석의 새로운 방법을 제시하고, 실제 도시공원 분석에 적용하여 공원 운영 및 관리 방안을 제안하고자 한다. 연구 방법으로는 Visual Question Answering(VQA) 딥러닝 기술을 활용한 이미지 분석 도구를 구축하였다. 이 도구를 이용해 공원 이용자의 특성과 위치, 이용행태 등의 각 도시공원 이용 특성을 파악하였으며, 이를 기반으로 공원별 운영 및 관리 전략을 마련했다. 연구 결과를 요약하면 다음과 같다. 첫째, VQA 딥러닝 기술을 활용해 도출한 이미지 분석 결과값이 기존의 텍스트 분석 결과값과 유사함을 확인하여 분석 도구의 유효성을 입증했다. 둘째, VQA 딥러닝 기술을 이용한 공원 이용 특성 분석은 기존의 텍스트 분석에서 얻을 수 없는 정보(성별, 연령, 이용시간 등)를 수집할 수 있음을 확인했다. 셋째, VQA 분석을 실제 공원의 이용 특성 분석에 적용하여 기존 공원의 운영 및 관리 방안을 제시했다. 본 연구의 결과를 토대로 VQA 딥러닝 기술을 이용한 공원 이용 특성 분석 방법은 향후 여러 공원 이용 특성 분석 시 중요한 방법론적 시사점을 줄 수 있을 것으로 판단된다.

인공지능을 활용한 흉부 엑스선 영상의 코로나19 검출 및 분류에 대한 분석 연구 (Analysis Study on the Detection and Classification of COVID-19 in Chest X-ray Images using Artificial Intelligence)

  • 윤명성;권채림;김성민;김수인;조성준;최유찬;김상현
    • 한국방사선학회논문지
    • /
    • 제16권5호
    • /
    • pp.661-672
    • /
    • 2022
  • COVID-19를 발생시키는 SARS-CoV2 바이러스가 발생한 후 전염병은 전 세계로 확산되며, 감염 사례와 사망자의 수가 빠르게 증가함에 따라 의료자원의 부족 문제가 야기되었다. 이것을 해결하려는 방법으로 인공지능을 활용한 흉부 X-ray 검사가 일차적인 진단 방법으로 관심을 받게 되었다. 본 연구에서는 인공지능을 통한 COVID-19 판독 방식들에 대해 종합적으로 분석하는 것에 목적을 두고 있다. 이 목적을 달성하기 위해 292개의 논문을 일련의 분류 방법을 거처 수집했다. 이러한 자료들을 토대로 Accuracy, Precision, Area Under Curve(AUC), Sensitivity, Specificity, F1-score, Recall, K-fold, Architecture, Class를 포함한 성능 측정정보를 분석했다. 그 결과로 평균 Accuracy, Precision, AUC, Sensitivity, Specificity 값은 각각 95.2%, 94.81%, 94.01%, 93.5%, 93.92%로 도출되었다. 연도별 성능 측정정보는 점차 증가하는 값을 나타냈고 이 외에도 Class 수, 이미지 데이터 수에 따른 변화율, Architecture 사용 비율, K-fold에 관한 연구를 진행했다. 현재 인공지능을 활용한 COVID-19의 진단은 독자적으로 사용되기에는 여러 문제가 존재하지만, 의사의 보조수단으로써 사용됨에는 부족함이 없을 것으로 예상된다.

헤어 컬러디자인 기법 중 그라데이션 기법을 응용한 헤어 컬러디자인 작품연구:여성을 중심으로 (A Study on Hair Color Design Works using the Gradient Technique among Hair Color Design Techniques: Focusing on Women)

  • 이승주;박기원
    • 산업과 과학
    • /
    • 제2권3호
    • /
    • pp.29-36
    • /
    • 2023
  • 본 연구의 목적은 헤어컬러디자인 기법 중 그라데이션 기법 분석을 통해 디자이너의 헤어컬러디자인 제작물을 일관되게 제작할 수 있는 헤어 컬러 작업 계획의 기초자료로 제시하고자한다. 연구 방법은 2022년부터 2023년 9월 15일까지 대중 매체에 나타난 여성의 사진 10개를 선정하여, Adobe Photoshop CS6의 Eyedropper Tool로 컬러 칩과 RGB 값을 추출하여 컬러 칩의 RGB 값을 Munsell Conversion(version 12.1.13a)의 HV/C 값으로 데이터화하였다. 추출된 데이터를 바탕으로 배색 스케일에 데이터를 표기하여 여자 대중 스타들의 그라데이션 헤어컬러를 분석하였다. 그 결과 I.R.I 배색 이미지 스케일에서 여성 대중 스타의 배색 스케일은 부드러움보다 딱딱함의 이미지가 두드러지게 나타났다. 또한 동적임 보다는 정적임에 집중되어 있음을 확인할 수 있었다. 헤어 컬러에 따른 배색 이미지로는 고상한, 점잖은, 우아한, 은은한 과 같은 형용사로 추출되었다. 이를 적용한 주제로 3점의 헤어스타일을 제작하였다.

Performance of ChatGPT 3.5 and 4 on U.S. dental examinations: the INBDE, ADAT, and DAT

  • Mahmood Dashti;Shohreh Ghasemi;Niloofar Ghadimi;Delband Hefzi;Azizeh Karimian;Niusha Zare;Amir Fahimipour;Zohaib Khurshid;Maryam Mohammadalizadeh Chafjiri;Sahar Ghaedsharaf
    • Imaging Science in Dentistry
    • /
    • 제54권3호
    • /
    • pp.271-275
    • /
    • 2024
  • Purpose: Recent advancements in artificial intelligence (AI), particularly tools such as ChatGPT developed by OpenAI, a U.S.-based AI research organization, have transformed the healthcare and education sectors. This study investigated the effectiveness of ChatGPT in answering dentistry exam questions, demonstrating its potential to enhance professional practice and patient care. Materials and Methods: This study assessed the performance of ChatGPT 3.5 and 4 on U.S. dental exams - specifically, the Integrated National Board Dental Examination (INBDE), Dental Admission Test (DAT), and Advanced Dental Admission Test (ADAT) - excluding image-based questions. Using customized prompts, ChatGPT's answers were evaluated against official answer sheets. Results: ChatGPT 3.5 and 4 were tested with 253 questions from the INBDE, ADAT, and DAT exams. For the INBDE, both versions achieved 80% accuracy in knowledge-based questions and 66-69% in case history questions. In ADAT, they scored 66-83% in knowledge-based and 76% in case history questions. ChatGPT 4 excelled on the DAT, with 94% accuracy in knowledge-based questions, 57% in mathematical analysis items, and 100% in comprehension questions, surpassing ChatGPT 3.5's rates of 83%, 31%, and 82%, respectively. The difference was significant for knowledge-based questions(P=0.009). Both versions showed similar patterns in incorrect responses. Conclusion: Both ChatGPT 3.5 and 4 effectively handled knowledge-based, case history, and comprehension questions, with ChatGPT 4 being more reliable and surpassing the performance of 3.5. ChatGPT 4's perfect score in comprehension questions underscores its trainability in specific subjects. However, both versions exhibited weaker performance in mathematical analysis, suggesting this as an area for improvement.