• Title/Summary/Keyword: AI drone

Search Result 52, Processing Time 0.031 seconds

A Research on Adversarial Example-based Passive Air Defense Method against Object Detectable AI Drone (객체인식 AI적용 드론에 대응할 수 있는 적대적 예제 기반 소극방공 기법 연구)

  • Simun Yuk;Hweerang Park;Taisuk Suh;Youngho Cho
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.119-125
    • /
    • 2023
  • Through the Ukraine-Russia war, the military importance of drones is being reassessed, and North Korea has completed actual verification through a drone provocation towards South Korea at 2022. Furthermore, North Korea is actively integrating artificial intelligence (AI) technology into drones, highlighting the increasing threat posed by drones. In response, the Republic of Korea military has established Drone Operations Command(DOC) and implemented various drone defense systems. However, there is a concern that the efforts to enhance capabilities are disproportionately focused on striking systems, making it challenging to effectively counter swarm drone attacks. Particularly, Air Force bases located adjacent to urban areas face significant limitations in the use of traditional air defense weapons due to concerns about civilian casualties. Therefore, this study proposes a new passive air defense method that aims at disrupting the object detection capabilities of AI models to enhance the survivability of friendly aircraft against the threat posed by AI based swarm drones. Using laser-based adversarial examples, the study seeks to degrade the recognition accuracy of object recognition AI installed on enemy drones. Experimental results using synthetic images and precision-reduced models confirmed that the proposed method decreased the recognition accuracy of object recognition AI, which was initially approximately 95%, to around 0-15% after the application of the proposed method, thereby validating the effectiveness of the proposed method.

A Study on detection of missing person using DRONE and AI (드론과 인공지능을 활용한 실종자 탐색에 관한 연구)

  • Kyoung-Mok Kim;Ho-beom Jeon;Geon-Seon Lim
    • Journal of the Health Care and Life Science
    • /
    • v.10 no.2
    • /
    • pp.361-367
    • /
    • 2022
  • This study provides several methods to minimize dead zone and to detect missing person using combined DRONE and AI especially called 4 th Industrial Revolution. That is composed of image acquisition for a person who is in needed of support. The procedure is DRONE that is made of image acquisition and transfer system. after that can be shown GPS information. Currently representative AI algorithm is YOLO (You Only Look Once) that can be adopted to find manikin or real image by learning with dataset. The output was reached in reliable and efficient results. As the trends of DRONE is expanded widely that will provide various roll. This paper was composed of three parts. the first is DRONE specification, the second is the definition of AI and procedures, the third is the methods of image acquisition using DRONE, the last is the future of DRONE with AI.

A study on Improving the Performance of Anti - Drone Systems using AI (인공지능(AI)을 활용한 드론방어체계 성능향상 방안에 관한 연구)

  • Hae Chul Ma;Jong Chan Moon;Jae Yong Park;Su Han Lee;Hyuk Jin Kwon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Drones are emerging as a new security threat, and the world is working to reduce them. Detection and identification are the most difficult and important parts of the anti-drone systems. Existing detection and identification methods each have their strengths and weaknesses, so complementary operations are required. Detection and identification performance in anti-drone systems can be improved through the use of artificial intelligence. This is because artificial intelligence can quickly analyze differences smaller than humans. There are three ways to utilize artificial intelligence. Through reinforcement learning-based physical control, noise and blur generated when the optical camera tracks the drone may be reduced, and tracking stability may be improved. The latest NeRF algorithm can be used to solve the problem of lack of enemy drone data. It is necessary to build a data network to utilize artificial intelligence. Through this, data can be efficiently collected and managed. In addition, model performance can be improved by regularly generating artificial intelligence learning data.

Implementation of On-Device AI System for Drone Operated Metal Detection with Magneto-Impedance Sensor

  • Jinbin Kim;Seongchan Park;Yunki Jeong;Hobyung Chae;Seunghyun Lee;Soonchul Kwon
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.101-108
    • /
    • 2024
  • This paper addresses the implementation of an on-device AI-based metal detection system using a Magneto-Impedance Sensor. Performing calculations on the AI device itself is essential, especially for unmanned aerial vehicles such as drones, where communication capabilities may be limited. Consequently, a system capable of analyzing data directly on the device is required. We propose a lightweight gated recurrent unit (GRU) model that can be operated on a drone. Additionally, we have implemented a real-time detection system on a CPU embedded system. The signals obtained from the Magneto-Impedance Sensor are processed in real-time by a Raspberry Pi 4 Model B. During the experiment, the drone flew freely at an altitude ranging from 1 to 10 meters in an open area where metal objects were placed. A total of 20,000,000 sequences of experimental data were acquired, with the data split into training, validation, and test sets in an 8:1:1 ratio. The results of the experiment demonstrated an accuracy of 94.5% and an inference time of 9.8 milliseconds. This study indicates that the proposed system is potentially applicable to unmanned metal detection drones.

Maritime Search And Rescue Drone Using Artificial Intelligence (인공지능을 이용한 해양구조 드론)

  • Shin, Gi-hwan;Kim, Jin-hong;Park, Han-gyu;Kang, Sun-kyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.688-689
    • /
    • 2022
  • This paper proposes the development of an AI drone equipped with motion detection and thermal imaging camera to quickly rescue people from drowning accidents. Currently, when a drowning accident occurs, a large number of manpower must be put in to find the person who needs it, such as conducting a search operation. The time required for this process is too long, and especially the night search is more difficult for a person to do directly. To solve this situation, we are going to use AI drones.

  • PDF

Drone Image AI Analysis Model for Ecological Environment Investigation (생태 환경 조사를 위한 드론영상 AI분석 모델)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.355-356
    • /
    • 2021
  • Geological and biological surveys are conducted every year to investigate the state of tidal flat loss and ecological changes in the Saemangeum embankment. In addition, various activities for forest monitoring and large-scale environmental monitoring are being actively carried out throughout Korea. Due to the recent development of drone technology and artificial intelligence technology, various studies are being conducted to perform these activities more efficiently and economically. In this study, we propose an image segmentation technique using semantic segmentation to efficiently investigate and analyze large-scale ecological environments using Drone.

  • PDF

Applying NIST AI Risk Management Framework: Case Study on NTIS Database Analysis Using MAP, MEASURE, MANAGE Approaches (NIST AI 위험 관리 프레임워크 적용: NTIS 데이터베이스 분석의 MAP, MEASURE, MANAGE 접근 사례 연구)

  • Jung Sun Lim;Seoung Hun, Bae;Taehoon Kwon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.21-29
    • /
    • 2024
  • Fueled by international efforts towards AI standardization, including those by the European Commission, the United States, and international organizations, this study introduces a AI-driven framework for analyzing advancements in drone technology. Utilizing project data retrieved from the NTIS DB via the "drone" keyword, the framework employs a diverse toolkit of supervised learning methods (Keras MLP, XGboost, LightGBM, and CatBoost) enhanced by BERTopic (natural language analysis tool). This multifaceted approach ensures both comprehensive data quality evaluation and in-depth structural analysis of documents. Furthermore, a 6T-based classification method refines non-applicable data for year-on-year AI analysis, demonstrably improving accuracy as measured by accuracy metric. Utilizing AI's power, including GPT-4, this research unveils year-on-year trends in emerging keywords and employs them to generate detailed summaries, enabling efficient processing of large text datasets and offering an AI analysis system applicable to policy domains. Notably, this study not only advances methodologies aligned with AI Act standards but also lays the groundwork for responsible AI implementation through analysis of government research and development investments.

Development of online drone control management information platform (온라인 드론방제 관리 정보 플랫폼 개발)

  • Lim, Jin-Taek;Lee, Sang-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.193-198
    • /
    • 2021
  • Recently, interests in the 4th industry have increased the level of demand for pest control by farmers in the field of rice farming, and the interests and use of agricultural pest control drones. Therefore, the diversification of agricultural control drones that spray high-concentration pesticides and the increase of agricultural exterminators due to the acquisition of national drone certifications are rapidly developing the agricultural sector in the drone industry. In addition, as detailed projects, an effective platform is required to construct large-scale big data due to pesticide management, exterminator management, precise spraying, pest control work volume classification, settlement, soil management, prediction and monitoring of damages by pests, etc. and to process the data. However, studies in South Korea and other countries on development of models and programs to integrate and process the big data such as data analysis algorithms, image analysis algorithms, growth management algorithms, AI algorithms, etc. are insufficient. This paper proposed an online drone pest control management information platform to meet the needs of managers and farmers in the agricultural field and to realize precise AI pest control based on the agricultural drone pest control processor using drones and presented foundation for development of a comprehensive management system through empirical experiments.

Abnormality Detection Method of Factory Roof Fixation Bolt by Using AI

  • Kim, Su-Min;Sohn, Jung-Mo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.33-40
    • /
    • 2022
  • In this paper, we propose a system that analyzes drone photographic images of panel-type factory roofs and conducts abnormal detection of bolts. Currently, inspectors directly climb onto the roof to carry out the inspection. However, safety accidents caused by working conditions at high places are continuously occurring, and new alternatives are needed. In response, the results of drone photography, which has recently emerged as an alternative to the dangerous environment inspection plan, will be easily inspected by finding the location of abnormal bolts using deep learning. The system proposed in this study proceeds with scanning the captured drone image using a sample image for the situation where the bolt cap is released. Furthermore, the scanned position is discriminated by using AI, and the presence/absence of the bolt abnormality is accurately discriminated. The AI used in this study showed 99% accuracy in test results based on VGGNet.

The Development of Artificial Intelligence-Enabled Combat Swarm Drones in the Future Intelligent Battlefield (지능화 전장에서 인공지능 기반 공격용 군집드론 운용 방안)

  • Hee Chae;Kyung Suk Lee;Jung-Ho Eom
    • Convergence Security Journal
    • /
    • v.23 no.3
    • /
    • pp.65-71
    • /
    • 2023
  • The importance of combat drones has been highlighted through the recent outbreak of the Russia-Ukraine war. The combat drones play a significant role as a a game changer that alters the conventional wisdom of traditional warfare. Many pundits expect the role of combat swarm drones would be more crucial in the future warfare. In this regard, this paper aims to analyze the development of artificial intelligence-enabled combat swarm drones. To transform the human-operated swarm drones into fully autonomous weaponry system our suggestions are as follows. Developments of (1) AI algorithms for optimized swarm drone operations, (2) decentralized command and control system, (3) inter-drones' mission analysis and allocation technology, (4) enhanced drone communication security and (5) set up of ethical guideline for the autonomous system. Specifically, we suggest the development of AI algorithms for drone collision avoidance and moving target attacks. Also, in order to adjust rapidly changing military environment, decentralized command and control system and mission analysis allocation technology are necessary. Lastly, cutting-edging secure communication technology and concrete ethical guidelines are essential for future AI-enabled combat swarm drones.