우크라이나-러시아 전을 통해 드론의 군사적 가치는 재평가되고 있으며, 북한은 '22년 말 대남 드론 도발을 통해 실제 검증까지 완료한 바 있다. 또한, 북한은 인공지능(AI) 기술의 드론 적용을 추진하고 있는 것으로 드러나 드론의 위협은 나날이 커지고 있다. 이에 우리 군은 드론작전사령부를 창설하고 다양한 드론 대응 체계를 도입하는 등 대 드론 체계 구축을 도모하고 있지만, 전력증강 노력이 타격체계 위주로 편중되어 군집드론 공격에 대한 효과적 대응이 우려된다. 특히, 도심에 인접한 공군 비행단은 민간 피해가 우려되어 재래식 방공무기의 사용 역시 극도로 제한되는 실정이다. 이에 본 연구에서는 AI기술이 적용된 적 군집드론의 위협으로부터 아 항공기의 생존성 향상을 위해 AI모델의 객체탐지 능력을 저해하는 소극방공 기법을 제안한다. 대표적인 적대적 머신러닝(Adversarial machine learning) 기술 중 하나인 적대적 예제(Adversarial example)를 레이저를 활용하여 항공기에 조사함으로써, 적 드론에 탑재된 객체인식 AI의 인식률 저하를 도모한다. 합성 이미지와 정밀 축소모형을 활용한 실험을 수행한 결과, 제안기법 적용 전 약 95%의 인식률을 보이는 객체인식 AI의 인식률을 제안기법 적용 후 0~15% 내외로 저하시키는 것을 확인하여 제안기법의 실효성을 검증하였다.
본 연구는 4차산업혁명 시대를 대표하는 인공지능을 드론에 탑재하여 실시간 이미지 정보를 획득하고 건강상, 또는 실신 등 응급을 요 하는 사람을 탐색함으로써 사각지대를 최소화하고 탐색의 효율성을 높이는데 그 목적이 있다. 본 연구는 드론에 영상정보 획득 장치를 탑재하고 미디어 서버에 전송 후 프레임 단위의 인공지능 학습 알고리즘을 적용하여 사람 인식 결과를 분석 후 해당 GPS 정보를 획득하는 절차로 진행된다. 최근 소개된 여러 인공지능 알고리즘 중에서 대표되는 YOLO 알고리즘을 적용하여 마네킹 또는 실제 이미지를 학습함으로써 신뢰도 높은 실험 결과를 보였으며 드론의 활용범위가 확대됨에 따라 인간의 접근 사각지대에서 그 역할이 확대될 것으로 기대된다. 논문의 구성은 임무 수행을 위한 드론의 사양을 소개하고 인공지능의 개념 및 활용 방법, 실제 드론 비행을 통한 이미지 획득 및 결과 분석 그리고 향후 활용범위로 기술하였다.
Drones are emerging as a new security threat, and the world is working to reduce them. Detection and identification are the most difficult and important parts of the anti-drone systems. Existing detection and identification methods each have their strengths and weaknesses, so complementary operations are required. Detection and identification performance in anti-drone systems can be improved through the use of artificial intelligence. This is because artificial intelligence can quickly analyze differences smaller than humans. There are three ways to utilize artificial intelligence. Through reinforcement learning-based physical control, noise and blur generated when the optical camera tracks the drone may be reduced, and tracking stability may be improved. The latest NeRF algorithm can be used to solve the problem of lack of enemy drone data. It is necessary to build a data network to utilize artificial intelligence. Through this, data can be efficiently collected and managed. In addition, model performance can be improved by regularly generating artificial intelligence learning data.
International journal of advanced smart convergence
/
제13권3호
/
pp.101-108
/
2024
This paper addresses the implementation of an on-device AI-based metal detection system using a Magneto-Impedance Sensor. Performing calculations on the AI device itself is essential, especially for unmanned aerial vehicles such as drones, where communication capabilities may be limited. Consequently, a system capable of analyzing data directly on the device is required. We propose a lightweight gated recurrent unit (GRU) model that can be operated on a drone. Additionally, we have implemented a real-time detection system on a CPU embedded system. The signals obtained from the Magneto-Impedance Sensor are processed in real-time by a Raspberry Pi 4 Model B. During the experiment, the drone flew freely at an altitude ranging from 1 to 10 meters in an open area where metal objects were placed. A total of 20,000,000 sequences of experimental data were acquired, with the data split into training, validation, and test sets in an 8:1:1 ratio. The results of the experiment demonstrated an accuracy of 94.5% and an inference time of 9.8 milliseconds. This study indicates that the proposed system is potentially applicable to unmanned metal detection drones.
본 논문은 익수 사고로 부터 요구조자를 신속히 구출하기 위한 모션감지 및 열화상 카메라를 탑재한 AI드론의 개발을 제안하고자 한다. 현재 익수사고가 발생하면, 많은 인력이 투입되어, 수색작전을 펼치는 등, 사람이 직접 요구조자를 찾아야만 한다. 이러한 과정에서 소요되는 시간이 너무 길고, 특히 야간수색은 사람이 직접하기에는 더욱더 힘든 부분이 많아 인명구조에 있어서 빠른 구조가 어려운 것이 현실적인 문제이다. 이러한 상황을 해결하고자 AI드론을 사용하려한다.
새만금 방조제의 갯벌 유실상태 및 생태변화를 조사하기 위해 매년 지질학적, 생물학적 조사가 이루어지고 있다. 또한 우리나라 전역에서 산림감시 및 대규모 환경 감시를 위한 다양한 활동들이 활발히 진행되고 있다. 최근 드론 기술과 인공지능 기술의 발달로 인하여 이러한 활동을 보다 효율적이고 경제적으로 수행하기 위한 다양한 연구가 진행되고 있다. 본 연구에서는 도론을 이용하여 대규모 면적의 생태환경을 효율적으로 조사 및 분석하기 위하여 시멘틱세그멘테이션 기법을 활용한 영상 분할 기법을 제안한다.
Fueled by international efforts towards AI standardization, including those by the European Commission, the United States, and international organizations, this study introduces a AI-driven framework for analyzing advancements in drone technology. Utilizing project data retrieved from the NTIS DB via the "drone" keyword, the framework employs a diverse toolkit of supervised learning methods (Keras MLP, XGboost, LightGBM, and CatBoost) enhanced by BERTopic (natural language analysis tool). This multifaceted approach ensures both comprehensive data quality evaluation and in-depth structural analysis of documents. Furthermore, a 6T-based classification method refines non-applicable data for year-on-year AI analysis, demonstrably improving accuracy as measured by accuracy metric. Utilizing AI's power, including GPT-4, this research unveils year-on-year trends in emerging keywords and employs them to generate detailed summaries, enabling efficient processing of large text datasets and offering an AI analysis system applicable to policy domains. Notably, this study not only advances methodologies aligned with AI Act standards but also lays the groundwork for responsible AI implementation through analysis of government research and development investments.
최근 4차 산업에 대한 관심으로 농업 분야의 벼농사에서 농민의 방제에 대한 요구수준이 증가하고 농업용 방제 드론의 관심과 활용이 증가하고 있다. 따라서 고농도의 농약을 살포하는 농업용 방제 드론 제품의 다양화와 드론 국가자격증 취득으로 인한 방제사의 증가로 인하여 드론 산업 분야에서 농업 분야가 급성장하고 있다. 세부 사업으로 농약 관리, 방제사 관리, 정밀살포, 방제 작업 물량 분류, 정산, 토양관리, 병충해 예찰 및 감시 등으로 방대한 빅데이터를 구축하고 데이터를 처리하기 위한 효과적인 플랫폼을 요구하고 있다. 그러나 데이터 분석알고리즘, 영상 분석 알고리즘, 생육 관리 알고리즘, AI 알고리즘 등 이를 통합하고 빅데이터를 처리하기 위한 모델과 프로그램 개발에 대한 국내외 연구는 미흡한 실정이다. 본 논문에서는 농업 분야에서의 관리자와 농민 요구도를 만족하고 드론을 활용한 농업용 드론방제 프로세서를 기반으로 정밀 AI 방제를 실현화시키기 위하여 온라인 드론 방제 관리 정보 플랫폼을 제안하고 실증 실험을 통하여 종합 관리 시스템 개발의 토대를 제시하였다.
본 연구는 판넬형 공장 지붕의 드론 촬영 이미지를 분석해 볼트의 이상 탐지를 수행하는 시스템을 제안한다. 지붕의 점검은 현재 점검자가 직접 지붕 위로 올라가 점검을 진행한다. 하지만 고소 작업 환경으로 인한 안전사고가 지속해서 발생하고 있어 새로운 대안이 필요하다. 이에, 최근 위험 환경의 점검 방안의 대안으로 대두되는 드론 촬영의 결과물을 딥러닝을 이용해 이상 볼트의 위치를 찾아내는 방안을 통해 손쉽게 점검할 수 있도록 한다. 본 연구에서 제안하고 있는 시스템은 촬영된 드론 이미지를 볼트캡이 풀려있는 상황에 대한 샘플 이미지를 사용해 스캐닝을 진행한다. 더 나아가 스캔 된 위치에 대해 AI를 사용해 판별해 정확하게 볼트 이상 여부를 판별한다. 본 연구에서 사용한 AI는 VGGNet 기반으로 정확도 99%의 테스트 결과를 보였다.
최근 발발한 러시아-우크라이나 전쟁을 통해 공격용 드론의 중요성이 부각되고 있다. 공격용 드론 활용은 그간의 재래식 전쟁의 통념을 깨는 게임체인저 역할을 하고 있다. 앞으로 지능화 전장에서 공격용 군집드론은 중요한 역할을 할 것으로 보인다. 이에 본 논문은 인공지능 기술을 바탕으로 향후 공격용 군집드론의 운용 발전 방향을 분석하고자 한다. 인간에 의해 운용되는 군집드론을 완전히 자율화된 군집드론으로 운용하기 위해서는 (1) 군집드론 운용에 최적화된 AI 알고리즘 적용, (2) 탈중앙식 지휘통제 방식 개발, (3) 드론 간 임무 분석 및 할당 자동화 기술 적용, (4) 드론 통신 보안 강화 및 (5) 무인화의 윤리 기준 확정이 중요하다. 세부적으로 군집드론 간의 충돌방지 및 이동형 표적을 공격하기 위한 AI 알고리즘이 필요하다. 또한, 급변하는 전장 상황에 빠르게 대처할 수 있는 탈중앙식 지휘통제 시스템 개발과 적 공격에 의한 드론 손실 발생 시 임무를 재할당 할 수 있어야 한다. 마지막으로, 군집드론의 안전한 운용을 위한 보안기술 개발 및 무인화에 따른 윤리문제 해결을 위한 기준제정이 중요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.