• Title/Summary/Keyword: AI convergence education

Search Result 210, Processing Time 0.02 seconds

Methods for Implementing Environmental Education in Elementary Schools by using AI Programming (초등교육에서 인공지능 프로그래밍을 활용한 환경교육 적용 방법)

  • Lee, Yongbae
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.309-314
    • /
    • 2021
  • Even though environmental education has been getting more attention along with the recent rapid increase of natural disasters such as heat wave, heavy snow and downpour, it is unlikely for elementary schools to provide actual lessons due to the shortage of financial support and educational resources. This study is designed to enhance the recycling judgement of the elementary students to define paper, glass, plastic, PET, metal by using AI programming. The survey from the student participants shows that the learning and practice with AI programming was positively helpful for more than 70% of the participants in knowledge obtaining and understanding of recycling. The participants also gained better understanding on artificial intelligence and got motivated to have more opportunities to learn artificial intelligence programming.

  • PDF

Development of Artificial Intelligence Convergence Education Program for Elementary Education Using Decision Tree (의사 결정 나무를 활용한 초등 인공지능 융합 교육 프로그램 개발)

  • Hyunwoo Moon;Youngjun Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.227-228
    • /
    • 2023
  • 정부의 인공지능 국가전략을 통해 인공지능 교육은 초등학교에서도 필수교육으로 대두되고 있다. 또한 인공지능 소양을 습득하기 위해 타 교과와 융합한 인공지능 융합 교육의 필요성이 증가하고 있고, 인공지능 발달에 대한 수학의 역할을 고려하여 수학 교과를 통해 인공지능의 이해를 기르는 것이 강조되고 있다. 따라서 본 연구에서는 수학 교과와 인공지능 교과가 융합한 인공지능 융합 교육 프로그램을 개발하기 위해 초등학교 3~4학년 수학 교과의 도형 분류를 의사 결정 나무 모델을 활용하여 가르치는 인공지능 융합 교육 프로그램을 개발하였다. 본 연구를 통해 개발된 프로그램은 초등학생의 인공지능 개념학습을 통한 인공지능 기초소양 함양뿐만 아니라 수학 교과의 이해 및 성취도 향상에 도움이 될 것으로 기대된다.

  • PDF

A Case Study on the Pre-service Math Teacher's Development of AI Literacy and SW Competency (예비수학교사의 AI 소양과 SW 역량 계발에 관한 사례 연구)

  • Kim, Dong Hwa;Kim, Seung Ho
    • East Asian mathematical journal
    • /
    • v.39 no.2
    • /
    • pp.93-117
    • /
    • 2023
  • The aim of this study is to explore the pre-service math teachers' characteristics of education to develop their AI literacy and SW competency, and to derive some implications. We conducted a 14-hours AI and SW education program for pre-service teachers with theory and practice, and an analysis on class observation data, video frames of classes and interview, Python programming assignments and papers. The results of this case study for 3 pre-service teachers are as follows. First, two students understood artificial neural network and deep learning system accurately, furthermore, all students conducted a couple of explorations related with performance improvement of deep learning system with interest. Second, coding and exploration activities using Python improved students' computational thinking as well as SW competency, which help them give convergence education in the future. Third, they responded positively to the necessity of AI literacy and SW competency development, and to applying coding to math class. Lastly, it's necessary to endeavor to give a coding education to the student's eye level according to his or her prerequisite and to ease the burden of student's studying AI technology.

An Influence of Accounting Information Education Characteristics on the Psychological Capital and Flow in Digital Convergence Society (디지털 컨버전스 사회에서 AI교육 특성변수가 심리적 자본과 플로워에 미치는 영향)

  • Lee, Shin-Nam
    • Journal of Digital Convergence
    • /
    • v.14 no.4
    • /
    • pp.139-147
    • /
    • 2016
  • The purpose of this study is to identify the relationships between AI education characteristics and psychological capital, psychological capital and flow, AI characteristics and flow through meditating effect of psychological capital in the digital convergence society. There are three AI characteristics: correctness, usefulness, easy of use. This empirical study was examined by 282 questionnaires to the three universities that teach accounting information system. It was performed by three-step method of the hierarchical regression analysis for the multiple regression analysis and parameter using the SPSS 22.0. The results and implications by analysis are as follows. First, AI characteristics and psychological capital have statistically significant positive influence. From AI attribute, correctness was established as the most important element. Second, psychological capital positively(+) influences flow. It allowed for the developed in flow. Third, psychological capital was shown as the major meditative variable between AI characteristics and flow. Through these, this paper suggests to reinforce self-efficacy, hope, resilience, optimism.

A study on the development of IoT-based middle school SW·AI education contents -Connection with Curriculum- (IoT 기반 중학교 SW·AI 교육 콘텐츠 개발에 관한 연구 -교육과정과의 연계-)

  • Han, JungSoo;Lee, Kenho
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.21-26
    • /
    • 2022
  • This study aims to enhance the cultivation of SW·AI basic competencies of middle school students by forming and distributing SW·AI education programs for middle school students who form the basis of their lives. In addition, by planning SW·AI education programs in connection with the regular curriculum, it is intended to serve as a cornerstone for the public education of SW·AI education that will be implemented from 2025. To this end, the concept of SW and AI in middle school was first defined and a plan to link software/artificial intelligence learning factors to the regular curriculum was proposed, and based on this, SW·AI education programs for middle school students were prepared. Based on literature research, the understanding of artificial intelligence technology, the value of data, and the use of artificial intelligence technology in real life were set as SW·AI education contents, and educational programs were organized by linking them with the current middle school curriculum. All SW·AI education was organized in the form of practice rather than theory so that classes could be conducted centered on participants, and the purpose of the course was to cultivate the ability to use artificial intelligence technology in real life based on understanding artificial intelligence technology.

Analysis of Machine Learning Education Tool for Kids

  • Lee, Yo-Seob;Moon, Phil-Joo
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.235-241
    • /
    • 2020
  • Artificial intelligence and machine learning are used in many parts of our daily lives, but the basic processes and concepts are barely exposed to most people. Understanding these basic concepts is becoming increasingly important as kids don't have the opportunity to explore AI processes and improve their understanding of basic machine learning concepts and their essential components. Machine learning educational tools can help children easily understand artificial intelligence and machine learning. In this paper, we examine machine learning education tools and compare their features.

A Case Study on the Operation of Artificial Intelligence Camp for Elementary School Students (초등학생을 위한 인공지능 캠프 운영 사례 연구)

  • Youngseok Lee;Jungwon Cho
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2023
  • For given the importance of elementary school students developing the ability to solve problems using artificial intelligence (AI), problem-solving abilities should be developed using AI along with education to develop problem-solving abilities. Such students need a form that allows them to understand the concepts and principles of AI and to be easily educated in a fun way to understand basic understanding of how AI works. To this end, this study planned an 8-hour AI convergence program and operated based on self-driving cars, demonstrating that it was effective in improving elementary school students' problem-solving abilities, creativity, and AI understanding. As a result of operating the camp, students' understanding of AI was 3.56 (standard deviation 0.85), 4.00 (standard deviation 0.71), and t-value was -5.412 (p<0.001), indicating statistically improved understanding of AI, and high satisfaction and interest of students. In the future, it will be necessary to develop an educational program that allows elementary school students to devise their own ideas and create products to which AI models can be applied.

The Expectation of Medical Artificial Intelligence of Students Majoring in Health in Convergence Era (융복합 시대에 일부 보건계열 전공 학생들의 의료용 인공지능에 대한 기대도)

  • Moon, Ja-Young;Sim, Seon-Ju
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.97-104
    • /
    • 2018
  • The purpose of this study was to investigate the expectation toward medical artificial intelligence(AI) of students in majoring health, and to utilize it as a basic data for widespread use of medical AI for 500 students majoring in health science at Cheonan city. The awareness of AI was 18.6%, the reliability of AI was 24.8%, and agreement to use of medical AI was 38%. Also, the higher the awareness and reliability of AI were, the higher the expectation of AI was. As a result, education on medical AI in the major field should be a cornerstone for the development of an effective healthcare environment utilizing medical AI by raising awareness, reliability and expectation of AI.

A Study on Effective Team Learning Support in Non-Face-To-Face Convergence Subjects (비대면 수업 융합교과의 효과적인 팀학습 지원에 관한 연구)

  • Jeon, Ju Hyun
    • Journal of Engineering Education Research
    • /
    • v.24 no.6
    • /
    • pp.79-85
    • /
    • 2021
  • In a future society where cutting-edge science technology such as artificial intelligence becomes commonplace, the demand for talented people with basic knowledge of mathematics and science is expected to increase continuously, and the educational infrastructure suitable for the characteristics of future generations is still insufficient. In particular, in the case of students taking convergence courses including practical training, there was a problem in communication with the instructor. In this study, we looked at the current status of distance learning at domestic universities that came suddenly due to the global pandemic of COVID-19. In addition, a case study of the use of technology was conducted to facilitate the interaction between instructors and learners through case analysis of distance classes in convergence subjects. Therefore, this study aims to introduce the case of developing lecture contents for smooth convergence education in a non-face-to-face educational environment targeting the developed AI convergence courses and applying them to the education of enrolled students.

Engineering Students' Ethical Sensitivity on Artificial Intelligence Robots (공학전공 대학생의 AI 로봇에 대한 윤리적 민감성)

  • Lee, Hyunok;Ko, Yeonjoo
    • Journal of Engineering Education Research
    • /
    • v.25 no.6
    • /
    • pp.23-37
    • /
    • 2022
  • This study evaluated the engineering students' ethical sensitivity to an AI emotion recognition robot scenario and explored its characteristics. For data collection, 54 students (27 majoring in Convergence Electronic Engineering and 27 majoring in Computer Software) were asked to list five factors regarding the AI robot scenario. For the analysis of ethical sensitivity, it was checked whether the students acknowledged the AI ethical principles in the AI robot scenario, such as safety, controllability, fairness, accountability, and transparency. We also categorized students' levels as either informed or naive based on whether or not they infer specific situations and diverse outcomes and feel a responsibility to take action as engineers. As a result, 40.0% of students' responses contained the AI ethical principles. These include safety 57.1%, controllability 10.7%, fairness 20.5%, accountability 11.6%, and transparency 0.0%. More students demonstrated ethical sensitivity at a naive level (76.8%) rather than at the informed level (23.2%). This study has implications for presenting an ethical sensitivity evaluation tool that can be utilized professionally in educational fields and applying it to engineering students to illustrate specific cases with varying levels of ethical sensitivity.