There are many attempts to apply AI technology to diagnose facilities or improve the work efficiency of the power industry. The emergence of new machine learning technologies, such as deep learning, is accelerating the digital transformation of the power sector. The problem is that traditional power systems face security risks when adopting state-of-the-art AI systems. This adoption has convergence characteristics and reveals new cybersecurity threats and vulnerabilities to the power system. This paper deals with the security measures and implementations of the power system using machine learning. Through building a commercial facility operations forecasting system using machine learning technology utilizing power big data, this paper identifies and addresses security vulnerabilities that must compensated to protect customer information and power system safety. Furthermore, it provides security guidelines by generalizing security measures to be considered when applying AI.
International journal of advanced smart convergence
/
v.12
no.3
/
pp.175-185
/
2023
As the era of ChatGPT and generative AI technologies unfolds, the marketing industry stands on the precipice of a paradigm shift. Innovations such as GPT-4, DALL-E 2, and Mid-journey Stable Diffusion possess the capacity to dramatically transform the methods by which advertisers reach and engage with customers. The potential applications of these advanced tools herald a new age for the marketing and advertising sectors, offering unprecedented opportunities for growth and optimization. Nevertheless, the rapid adoption of generative AI within these industries presents a unique set of challenges, particularly for organizations that lack the necessary technological infrastructure and human capital to effectively leverage these innovations. As a result, a competitive crisis may emerge, exacerbating existing disparities between well-equipped enterprises and their less technologically adept counterparts. In this article, we undertake a comprehensive exploration of the implications of generative AI for the future of marketing, examining both its potential benefits and drawbacks. We consider the possible impact of these developments on the advertising and marketing industries at large, as well as the ways in which professionals operating within these fields may need to adapt to remain competitive in an increasingly AI-driven landscape. By providing a holistic overview of the challenges and opportunities associated with generative AI, this study aims to elucidate the complex dynamics at play in the ongoing evolution of the marketing and advertising sectors.
This explorative study examines the difference in firm performance according to the adoption of the core technology of the Fourth industrial revolution, including artificial intelligence(AI), internet of things (IoT), cloud computing, and big data technology. Additionally, we investigate the importance of internal organizational structure exclusively responsible for information security. We analyze unique microdata offered by the Korea Information Society Development Institute to examine the impact of the adoption of the new technologies and the existence of organizational structure for information protection on firm performance, i.e., firm sales. By considering the core information technology as powerful knowledge assets, we argue that the adoption of such technology leads firms to have comparative advantage comparing to the competitors. Also, we emphasize the need to consider the organizational structure suitable for information security, which can become a structural asset of a firm.
Journal of the Korea Society of Computer and Information
/
v.29
no.7
/
pp.53-71
/
2024
Generative Artificial Intelligence (AI) has become the focus of societal attention due to its wide range of applications and profound impact. This paper constructs a comprehensive theoretical model based on the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2), integrating variables such as Personal Innovativeness and Perceived Risk to study the key factors influencing enterprises' adoption of Generative AI. We employed Structural Equation Modeling (SEM) to verify the hypothesized paths and used the Bootstrapping method to test the mediating effect of Behavioral Intention. Additionally, we explored the moderating effect of Perceived Risk through Hierarchical Regression Analysis. The results indicate that Performance Expectancy, Effort Expectancy, Social Influence, Price Value, and Personal Innovativeness have significant positive impacts on Behavioral Intention. Behavioral Intention plays a significant mediating role between these factors and Use Behavior, while Perceived Risk negatively moderates the relationship between Behavioral Intention and Use Behavior. This study provides theoretical and empirical support for how enterprises can effectively adopt Generative AI, offering important practical implications.
Journal of the Korea Institute of Information Security & Cryptology
/
v.34
no.5
/
pp.981-991
/
2024
Adversarial attacks, which induce malfunctions in AI technologies, can be applied to various domains and models, easily compromising SOTA (State-of-the-Art) models. Although adversarial defense techniques have been developed to counter these attacks, their applicability is limited due to constraints. Consequently, not only is the adoption of AI technology delayed, but also advanced research is restricted. To address this issue, this paper introduces a novel concept of adversarial data by reversing the sign of the loss function update in adversarial attacks. Experiments were conducted by applying the reverse-update adversarial data to data poisoning and adversarial training environments, showing that it can reduce the model's performance up to 72% and is most effective in enhancing robustness in 6 out of 9 environments. Ultimately, the proposed data can stimulate extensive research on adversarial attacks and defenses, further promoting the advancement of defense technology and contributing to the safe adoption of AI.
Purpose Despite the recent increase in the use of selection tools using artificial intelligence (AI), far less is known about the effectiveness of them in recruitment and selection research. Design/methodology/approach This paper tests the impact of AI-based initial screening and interview on intentions to apply. We also examine the moderating role of individual difference (i.e., reliability on technology) in the relationship. Findings Using policy-capturing with undergraduate students at a large university in South Korea, this study showed that AI-based interview has a negative effect on intentions to apply, where AI-based initial screening has no effect. These results suggest that applicants may have a negative feeling of AI-based interview, but they may not AI-based initial screening. In other words, AI-based interview can reduce application rates, but AI-based screening not. Results also indicated that the relationship between AI-based initial screening and intentions to apply is moderated by the level of applicant's reliability on technology. Specifically, respondents with high levels of reliability are more likely than those with low levels of reliability to apply for firms using AI-based initial screening. However, the moderating role of reliability was not significant in the relationship between the AI interview and the applying intention. Employing uncertainty reduction theory, this study indicated that the relationship between AI-based selection tools and intentions to apply is dynamic, suggesting that organizations should carefully manage their AI-based selection techniques throughout the recruitment and selection process.
AI speakers which are wireless speakers with smart features have released from many manufacturers and adopted by many customers. Though smart features including voice recognition, controlling connected devices and providing information are embedded in many mobile phones, AI speakers are sitting in home and has a role of the central en-tertainment and information provider. Many surveys have investigated the important factors to adopt AI speakers and influ-encing factors on satisfaction. Though most surveys on AI speakers are cross sectional, we can track customer attitude toward AI speakers longitudinally by analyzing customer reviews on AI speakers. However, there is not much research on the change of customer attitude toward AI speaker. Therefore, in this study, we try to grasp how the attitude of AI speaker changes with time by applying text mining-based analysis. We collected the customer reviews on Amazon Echo which has the highest share of AI speakers in the global market from Amazon.com. Since Amazon Echo already have two generations, we can analyze the characteristics of reviews and compare the attitude ac-cording to the adoption time. We identified all sub topics of customer reviews and specified the topics for smart features. And we analyzed how the share of topics varied with time and analyzed diverse meta data for comparisons. The proportions of the topics for general satisfaction and satisfaction on music were increasing while the proportions of the topics for music quality, speakers and wireless speakers were decreasing over time. Though the proportions of topics for smart fea-tures were similar according to time, the share of the topics in positive reviews and importance metrics were reduced in the 2nd generation of Amazon Echo. Even though smart features were mentioned similarly in the reviews, the influential effect on satisfac-tion were reduced over time and especially in the 2nd generation of Amazon Echo.
Kyung Ah Kim;Hakseung Kim;Eun Jin Ha;Byung C. Yoon;Dong-Joo Kim
Journal of Korean Neurosurgical Society
/
v.67
no.5
/
pp.493-509
/
2024
In neurointensive care units (NICUs), particularly in cases involving traumatic brain injury (TBI), swift and accurate decision-making is critical because of rapidly changing patient conditions and the risk of secondary brain injury. The use of artificial intelligence (AI) in NICU can enhance clinical decision support and provide valuable assistance in these complex scenarios. This article aims to provide a comprehensive review of the current status and future prospects of AI utilization in the NICU, along with the challenges that must be overcome to realize this. Presently, the primary application of AI in NICU is outcome prediction through the analysis of preadmission and high-resolution data during admission. Recent applications include augmented neuromonitoring via signal quality control and real-time event prediction. In addition, AI can integrate data gathered from various measures and support minimally invasive neuromonitoring to increase patient safety. However, despite the recent surge in AI adoption within the NICU, the majority of AI applications have been limited to simple classification tasks, thus leaving the true potential of AI largely untapped. Emerging AI technologies, such as generalist medical AI and digital twins, harbor immense potential for enhancing advanced neurocritical care through broader AI applications. If challenges such as acquiring high-quality data and ethical issues are overcome, these new AI technologies can be clinically utilized in the actual NICU environment. Emphasizing the need for continuous research and development to maximize the potential of AI in the NICU, we anticipate that this will further enhance the efficiency and accuracy of TBI treatment within the NICU.
Kareem Kola Yusuff;Adigun Adebayo Ismail;Park Kidoo;Jung Younghun
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.95-95
/
2023
Common hydrological problems of developing countries include poor data management, insufficient measuring devices and ungauged watersheds, leading to small or unreliable data availability. This has greatly affected the adoption of artificial intelligence techniques for flood risk mitigation and damage control in several developing countries. While climate datasets have recorded resounding applications, but they exhibit more uncertainties than ground-based measurements. To encourage AI adoption in developing countries with small ground-based dataset, we propose data augmentation for regression tasks and compare performance evaluation of different AI models with and without data augmentation. More focus is placed on simple models that offer lesser computational cost and higher accuracy than deeper models that train longer and consume computer resources, which may be insufficient in developing countries. To implement this approach, we modelled and predicted streamflow data of the Asa River Watershed located in Ilorin, Kwara State Nigeria. Results revealed that adequate hyperparameter tuning and proper model selection improve streamflow prediction on small water dataset. This approach can be implemented in data-scarce regions to ensure timely flood intervention and early warning systems are adopted in developing countries.
Expectations for artificial intelligence technology are increasing, and its utility value is growing, leading to active use in the public sector. The use of artificial intelligence technology in the public sector has a positive impact on aspects such as improving public work efficiency and service quality, enhancing transparency and reliability, and contributing to the development of technology and industries. For these reasons, major countries including Korea are actively developing and using artificial intelligence in the public sector. However, artificial intelligence also presents issues such as bias, inequality, and infringement of individuals' right to self-determination, which are evident even in its utilization in the public sector. Especially the use of artificial intelligence technology in the public sector has significant societal implications, as well as direct implications on limiting and infringing upon the rights of citizens. Therefore, careful consideration is necessary in the introduction and utilization of such technology. This paper comprehensively examines the legal issues that require consideration regarding the introduction of artificial intelligence in the public sector. Methodological discussions that can minimize the risks that may arise from artificial intelligence and maximize the utility of technology were proposed in each process and step of introduction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.