• Title/Summary/Keyword: AI adoption

Search Result 91, Processing Time 0.032 seconds

Guideline on Security Measures and Implementation of Power System Utilizing AI Technology (인공지능을 적용한 전력 시스템을 위한 보안 가이드라인)

  • Choi, Inji;Jang, Minhae;Choi, Moonsuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.399-404
    • /
    • 2020
  • There are many attempts to apply AI technology to diagnose facilities or improve the work efficiency of the power industry. The emergence of new machine learning technologies, such as deep learning, is accelerating the digital transformation of the power sector. The problem is that traditional power systems face security risks when adopting state-of-the-art AI systems. This adoption has convergence characteristics and reveals new cybersecurity threats and vulnerabilities to the power system. This paper deals with the security measures and implementations of the power system using machine learning. Through building a commercial facility operations forecasting system using machine learning technology utilizing power big data, this paper identifies and addresses security vulnerabilities that must compensated to protect customer information and power system safety. Furthermore, it provides security guidelines by generalizing security measures to be considered when applying AI.

Generative AI and its Implications for Modern Marketing: Analyzing Potential Challenges and Opportunities

  • Yoo, Seung-Chul;Piscarac, Diana
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.175-185
    • /
    • 2023
  • As the era of ChatGPT and generative AI technologies unfolds, the marketing industry stands on the precipice of a paradigm shift. Innovations such as GPT-4, DALL-E 2, and Mid-journey Stable Diffusion possess the capacity to dramatically transform the methods by which advertisers reach and engage with customers. The potential applications of these advanced tools herald a new age for the marketing and advertising sectors, offering unprecedented opportunities for growth and optimization. Nevertheless, the rapid adoption of generative AI within these industries presents a unique set of challenges, particularly for organizations that lack the necessary technological infrastructure and human capital to effectively leverage these innovations. As a result, a competitive crisis may emerge, exacerbating existing disparities between well-equipped enterprises and their less technologically adept counterparts. In this article, we undertake a comprehensive exploration of the implications of generative AI for the future of marketing, examining both its potential benefits and drawbacks. We consider the possible impact of these developments on the advertising and marketing industries at large, as well as the ways in which professionals operating within these fields may need to adapt to remain competitive in an increasingly AI-driven landscape. By providing a holistic overview of the challenges and opportunities associated with generative AI, this study aims to elucidate the complex dynamics at play in the ongoing evolution of the marketing and advertising sectors.

An Exploratory Study on the Core Technology of the Fourth Industrial Revolution and Information Security Organization: Focusing on Firm Performance (4차산업혁명 핵심기술 도입 및 정보보호조직에 관한 탐색적 연구: 성과측면에서의 비교분석)

  • Kim, Kihyun;Cho, Hyejin;Lim, Sohee
    • Knowledge Management Research
    • /
    • v.21 no.1
    • /
    • pp.41-59
    • /
    • 2020
  • This explorative study examines the difference in firm performance according to the adoption of the core technology of the Fourth industrial revolution, including artificial intelligence(AI), internet of things (IoT), cloud computing, and big data technology. Additionally, we investigate the importance of internal organizational structure exclusively responsible for information security. We analyze unique microdata offered by the Korea Information Society Development Institute to examine the impact of the adoption of the new technologies and the existence of organizational structure for information protection on firm performance, i.e., firm sales. By considering the core information technology as powerful knowledge assets, we argue that the adoption of such technology leads firms to have comparative advantage comparing to the competitors. Also, we emphasize the need to consider the organizational structure suitable for information security, which can become a structural asset of a firm.

Analysis of Key Factors in Corporate Adoption of Generative Artificial Intelligence Based on the UTAUT2 Model

  • Yongfeng Hu;Haojie Jiang;Chi Gong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.53-71
    • /
    • 2024
  • Generative Artificial Intelligence (AI) has become the focus of societal attention due to its wide range of applications and profound impact. This paper constructs a comprehensive theoretical model based on the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2), integrating variables such as Personal Innovativeness and Perceived Risk to study the key factors influencing enterprises' adoption of Generative AI. We employed Structural Equation Modeling (SEM) to verify the hypothesized paths and used the Bootstrapping method to test the mediating effect of Behavioral Intention. Additionally, we explored the moderating effect of Perceived Risk through Hierarchical Regression Analysis. The results indicate that Performance Expectancy, Effort Expectancy, Social Influence, Price Value, and Personal Innovativeness have significant positive impacts on Behavioral Intention. Behavioral Intention plays a significant mediating role between these factors and Use Behavior, while Perceived Risk negatively moderates the relationship between Behavioral Intention and Use Behavior. This study provides theoretical and empirical support for how enterprises can effectively adopt Generative AI, offering important practical implications.

Reverse-Update Adversarial Data for Enhancing Adversarial Attack and Adversarial Training Performance (적대적 공격 및 방어 기술의 성능 향상을 위한 역방향 적대적 데이터 생성 연구)

  • Jung Yup Rhee;Wonyoung Cho;Leo Hyun Park;Taekyoung Kwon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.981-991
    • /
    • 2024
  • Adversarial attacks, which induce malfunctions in AI technologies, can be applied to various domains and models, easily compromising SOTA (State-of-the-Art) models. Although adversarial defense techniques have been developed to counter these attacks, their applicability is limited due to constraints. Consequently, not only is the adoption of AI technology delayed, but also advanced research is restricted. To address this issue, this paper introduces a novel concept of adversarial data by reversing the sign of the loss function update in adversarial attacks. Experiments were conducted by applying the reverse-update adversarial data to data poisoning and adversarial training environments, showing that it can reduce the model's performance up to 72% and is most effective in enhancing robustness in 6 out of 9 environments. Ultimately, the proposed data can stimulate extensive research on adversarial attacks and defenses, further promoting the advancement of defense technology and contributing to the safe adoption of AI.

The Impact of Artificial Intelligence Adoption in Candidates Screening and Job Interview on Intentions to Apply (채용 전형에서 인공지능 기술 도입이 입사 지원의도에 미치는 영향)

  • Lee, Hwanwoo;Lee, Saerom;Jung, Kyoung Chol
    • The Journal of Information Systems
    • /
    • v.28 no.2
    • /
    • pp.25-52
    • /
    • 2019
  • Purpose Despite the recent increase in the use of selection tools using artificial intelligence (AI), far less is known about the effectiveness of them in recruitment and selection research. Design/methodology/approach This paper tests the impact of AI-based initial screening and interview on intentions to apply. We also examine the moderating role of individual difference (i.e., reliability on technology) in the relationship. Findings Using policy-capturing with undergraduate students at a large university in South Korea, this study showed that AI-based interview has a negative effect on intentions to apply, where AI-based initial screening has no effect. These results suggest that applicants may have a negative feeling of AI-based interview, but they may not AI-based initial screening. In other words, AI-based interview can reduce application rates, but AI-based screening not. Results also indicated that the relationship between AI-based initial screening and intentions to apply is moderated by the level of applicant's reliability on technology. Specifically, respondents with high levels of reliability are more likely than those with low levels of reliability to apply for firms using AI-based initial screening. However, the moderating role of reliability was not significant in the relationship between the AI interview and the applying intention. Employing uncertainty reduction theory, this study indicated that the relationship between AI-based selection tools and intentions to apply is dynamic, suggesting that organizations should carefully manage their AI-based selection techniques throughout the recruitment and selection process.

Customer Attitude to Artificial Intelligence Features: Exploratory Study on Customer Reviews of AI Speakers (인공지능 속성에 대한 고객 태도 변화: AI 스피커 고객 리뷰 분석을 통한 탐색적 연구)

  • Lee, Hong Joo
    • Knowledge Management Research
    • /
    • v.20 no.2
    • /
    • pp.25-42
    • /
    • 2019
  • AI speakers which are wireless speakers with smart features have released from many manufacturers and adopted by many customers. Though smart features including voice recognition, controlling connected devices and providing information are embedded in many mobile phones, AI speakers are sitting in home and has a role of the central en-tertainment and information provider. Many surveys have investigated the important factors to adopt AI speakers and influ-encing factors on satisfaction. Though most surveys on AI speakers are cross sectional, we can track customer attitude toward AI speakers longitudinally by analyzing customer reviews on AI speakers. However, there is not much research on the change of customer attitude toward AI speaker. Therefore, in this study, we try to grasp how the attitude of AI speaker changes with time by applying text mining-based analysis. We collected the customer reviews on Amazon Echo which has the highest share of AI speakers in the global market from Amazon.com. Since Amazon Echo already have two generations, we can analyze the characteristics of reviews and compare the attitude ac-cording to the adoption time. We identified all sub topics of customer reviews and specified the topics for smart features. And we analyzed how the share of topics varied with time and analyzed diverse meta data for comparisons. The proportions of the topics for general satisfaction and satisfaction on music were increasing while the proportions of the topics for music quality, speakers and wireless speakers were decreasing over time. Though the proportions of topics for smart fea-tures were similar according to time, the share of the topics in positive reviews and importance metrics were reduced in the 2nd generation of Amazon Echo. Even though smart features were mentioned similarly in the reviews, the influential effect on satisfac-tion were reduced over time and especially in the 2nd generation of Amazon Echo.

Artificial Intelligence-Enhanced Neurocritical Care for Traumatic Brain Injury : Past, Present and Future

  • Kyung Ah Kim;Hakseung Kim;Eun Jin Ha;Byung C. Yoon;Dong-Joo Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.5
    • /
    • pp.493-509
    • /
    • 2024
  • In neurointensive care units (NICUs), particularly in cases involving traumatic brain injury (TBI), swift and accurate decision-making is critical because of rapidly changing patient conditions and the risk of secondary brain injury. The use of artificial intelligence (AI) in NICU can enhance clinical decision support and provide valuable assistance in these complex scenarios. This article aims to provide a comprehensive review of the current status and future prospects of AI utilization in the NICU, along with the challenges that must be overcome to realize this. Presently, the primary application of AI in NICU is outcome prediction through the analysis of preadmission and high-resolution data during admission. Recent applications include augmented neuromonitoring via signal quality control and real-time event prediction. In addition, AI can integrate data gathered from various measures and support minimally invasive neuromonitoring to increase patient safety. However, despite the recent surge in AI adoption within the NICU, the majority of AI applications have been limited to simple classification tasks, thus leaving the true potential of AI largely untapped. Emerging AI technologies, such as generalist medical AI and digital twins, harbor immense potential for enhancing advanced neurocritical care through broader AI applications. If challenges such as acquiring high-quality data and ethical issues are overcome, these new AI technologies can be clinically utilized in the actual NICU environment. Emphasizing the need for continuous research and development to maximize the potential of AI in the NICU, we anticipate that this will further enhance the efficiency and accuracy of TBI treatment within the NICU.

Flow Assessment and Prediction in the Asa River Watershed using different Artificial Intelligence Techniques on Small Dataset

  • Kareem Kola Yusuff;Adigun Adebayo Ismail;Park Kidoo;Jung Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.95-95
    • /
    • 2023
  • Common hydrological problems of developing countries include poor data management, insufficient measuring devices and ungauged watersheds, leading to small or unreliable data availability. This has greatly affected the adoption of artificial intelligence techniques for flood risk mitigation and damage control in several developing countries. While climate datasets have recorded resounding applications, but they exhibit more uncertainties than ground-based measurements. To encourage AI adoption in developing countries with small ground-based dataset, we propose data augmentation for regression tasks and compare performance evaluation of different AI models with and without data augmentation. More focus is placed on simple models that offer lesser computational cost and higher accuracy than deeper models that train longer and consume computer resources, which may be insufficient in developing countries. To implement this approach, we modelled and predicted streamflow data of the Asa River Watershed located in Ilorin, Kwara State Nigeria. Results revealed that adequate hyperparameter tuning and proper model selection improve streamflow prediction on small water dataset. This approach can be implemented in data-scarce regions to ensure timely flood intervention and early warning systems are adopted in developing countries.

  • PDF

Legal and Institutional Issues and Improvements for the Adoption and Utilization of Artificial Intelligence in Government Services (정부서비스에서의 인공지능 도입 및 활용을 위한 법제도적 쟁점과 개선과제)

  • BeopYeon Kim
    • Journal of Information Technology Services
    • /
    • v.22 no.4
    • /
    • pp.53-80
    • /
    • 2023
  • Expectations for artificial intelligence technology are increasing, and its utility value is growing, leading to active use in the public sector. The use of artificial intelligence technology in the public sector has a positive impact on aspects such as improving public work efficiency and service quality, enhancing transparency and reliability, and contributing to the development of technology and industries. For these reasons, major countries including Korea are actively developing and using artificial intelligence in the public sector. However, artificial intelligence also presents issues such as bias, inequality, and infringement of individuals' right to self-determination, which are evident even in its utilization in the public sector. Especially the use of artificial intelligence technology in the public sector has significant societal implications, as well as direct implications on limiting and infringing upon the rights of citizens. Therefore, careful consideration is necessary in the introduction and utilization of such technology. This paper comprehensively examines the legal issues that require consideration regarding the introduction of artificial intelligence in the public sector. Methodological discussions that can minimize the risks that may arise from artificial intelligence and maximize the utility of technology were proposed in each process and step of introduction.