As computing systems become increasingly larger, high-performance computing (HPC) is gaining importance. In particular, as hyperscale artificial intelligence (AI) applications, such as large language models emerge, HPC has become important even in the field of AI. Important operations in hyperscale AI and HPC are mainly linear algebraic operations based on tensors. An AB21 supercomputing AI processor has been proposed to accelerate such applications. This study proposes a XEM accelerator to accelerate linear algebraic operations in an AB21 processor effectively. The XEM accelerator has outer product-based parallel floating-point units that can efficiently process tensor operations. We provide hardware details of the XEM architecture and introduce new instructions for controlling the XEM accelerator. Additionally, hardware characteristic analyses based on chip fabrication and simulator-based functional verification are conducted. In the future, the performance and functionalities of the XEM accelerator will be verified using an AB21 processor.
Cho, Kwon Neung;Choi, Do Young;Jeong, Young Woo;Lee, Seung Eun
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.600-602
/
2021
With the development of the mobile industry and growing interest in artificial intelligence (AI) technology, a lot of research for AI processors which applicable to embedded systems is under study. When implementing AI to embedded systems, the design should be considered the restriction of resource and power consumption. Moreover, it is efficient to include a dedicated hardware accelerator in order to complement the low computational performance of the embedded system. In this paper, we propose an stand-alone embedded AI processor. The proposed AI processor includes a hardware accelerator that is dedicated to the distance-based AI algorithm and a general-purpose MCU that supports flexible programmability for application to various embedded systems. The AI processor was designed with Verilog HDL and verified by implementing on Field Programmable Gate Array (FPGA).
With increasing size of transformer-based neural networks, a light-weight algorithm and efficient AI accelerator has been developed to train these huge networks in practical design time. In this article, we present a survey of state-of-the-art research on the low-precision computational algorithms especially for floating-point formats and their hardware accelerator. We describe the trends by focusing on the work of two leading research groups-IBM and Seoul National University-which have deep knowledge in both AI algorithm and hardware architecture. For the low-precision algorithm, we summarize two efficient floating-point formats (hybrid FP8 and radix-4 FP4) with accuracy-preserving algorithms for training on the main research stream. Moreover, we describe the AI processor architecture supporting the low-bit mixed precision computing unit including the integer engine.
We present AB9, a neural processor for inference acceleration. AB9 consists of a systolic tensor core (STC) neural network accelerator designed to accelerate artificial intelligence applications by exploiting the data reuse and parallelism characteristics inherent in neural networks while providing fast access to large on-chip memory. Complementing the hardware is an intuitive and user-friendly development environment that includes a simulator and an implementation flow that provides a high degree of programmability with a short development time. Along with a 40-TFLOP STC that includes 32k arithmetic units and over 36 MB of on-chip SRAM, our baseline implementation of AB9 consists of a 1-GHz quad-core setup with other various industry-standard peripheral intellectual properties. The acceleration performance and power efficiency were evaluated using YOLOv2, and the results show that AB9 has superior performance and power efficiency to that of a general-purpose graphics processing unit implementation. AB9 has been taped out in the TSMC 28-nm process with a chip size of 17 × 23 ㎟. Delivery is expected later this year.
This paper evaluated the amount of radiation generated by wedge filters during radiation therapy using a high-energy linear accelerator, and the dose to the worker during wedge replacement. After 10-MV photon beam was irradiated with wedge filter, the wedge was removed from the linear accelerator, and the dose rate and energy spectrum were measured. The initial measurement was approximately 1 uSv/h, and the radiation level was reduced to 0.3 uSv/h after 6 min. The effective half-life derived from the dose rate measurement was approximately 3.5 min, and the influence of AI-28 was about 53%. From the energy spectrum measurements, a peak of 1,799 keV was measured for AI-28, while the peak for Co-58 was not measured in the control room. The peaks for Au-106 and Cd-105 were found only measurement was done without wedge removement from the linear accelerator. The additional doses received by the radiation worker during wedge replacement were estimated to be 0.08-0.4 mSv per year.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.6
/
pp.850-858
/
2022
To deploy Gate Recurrent Units (GRU) on resource-constrained embedded devices, this paper presents a reconfigurable FPGA-based GRU accelerator that enables structured compression. Firstly, a dense GRU model is significantly reduced in size by hybrid quantization and structured top-k pruning. Secondly, the energy consumption on external memory access is greatly reduced by the proposed reuse computing pattern. Finally, the accelerator can handle a structured sparse model that benefits from the algorithm-hardware co-design workflows. Moreover, inference tasks can be flexibly performed using all functional dimensions, sequence length, and number of layers. Implemented on the Intel DE1-SoC FPGA, the proposed accelerator achieves 45.01 GOPs in a structured sparse GRU network without batching. Compared to the implementation of CPU and GPU, low-cost FPGA accelerator achieves 57 and 30x improvements in latency, 300 and 23.44x improvements in energy efficiency, respectively. Thus, the proposed accelerator is utilized as an early study of real-time embedded applications, demonstrating the potential for further development in the future.
단일 dataflow 를 지원하는 DNN 가속기는 자원 효율적인 성능을 보이지만, 여러 DNN 모델에 대해서 가속 효과가 제한적입니다. 반면에 모든 dataflow 를 지원하여 매 레이어마다 최적의 dataflow를 사용하여 가속하는 reconfigurable dataflow accelerator (RDA)는 굉장한 가속 효과를 보이지만 여러 dataflow 를 지원하는 과정에서 필요한 추가 하드웨어로 인하여 효율적이지 못합니다. 따라서 본 연구는 제한된 dataflow 만을 지원하여 추가 하드웨어 요구사항을 감소시키고, 중복되는 하드웨어의 재사용을 통해 최적화하는 새로운 가속기 설계를 제안합니다. 이 방식은 자원적 한계가 뚜렷한 엣지 디바이스에 RDA 방식을 적용하는데 필수적이며, 기존 RDA 의 단점을 최소화하여 성능과 자원 효율성의 최적점을 달성합니다. 실험 결과, 제안된 가속기는 기존 RDA 대비 32% 더 높은 에너지 효율을 보이며, latency 는 불과 1%의 차이를 보였습니다.
AI 가속기는 머신 러닝 및 딥 러닝을 포함한 인공 지능 및 기계 학습 응용 프로그램의 연산을 더 빠르게 수행하도록 설계된 일종의 하드웨어 가속기 또는 컴퓨터 시스템이다. 가속기를 설계하기 위해선 설계 영역 탐색(Design Space Exploration)을 하여야 하고 여러 인공지능 중에서도 합성 곱 신경망(CNN)에 대한 설계 영역 탐색을 소개한다.
Deep learning (DL) has significantly advanced artificial intelligence (AI); however, frameworks such as PyTorch, ONNX, and TensorFlow are optimized for general-purpose GPUs, leading to inefficiencies on specialized accelerators such as neural processing units (NPUs) and processing-in-memory (PIM) devices. These accelerators are designed to optimize both throughput and energy efficiency but they require more tailored optimizations. To address these limitations, we propose the NEST compiler (NEST-C), a novel DL framework that improves the deployment and performance of models across various AI accelerators. NEST-C leverages profiling-based quantization, dynamic graph partitioning, and multi-level intermediate representation (IR) integration for efficient execution on diverse hardware platforms. Our results show that NEST-C significantly enhances computational efficiency and adaptability across various AI accelerators, achieving higher throughput, lower latency, improved resource utilization, and greater model portability. These benefits contribute to more efficient DL model deployment in modern AI applications.
4 차 산업혁명 시대의 도래와 함께 AI, ICT 기술의 융합이 진행됨에 따라, 유저 레벨의 디바이스에서도 AI 서비스의 요청이 실현되었다. 이미지 처리와 관련된 AI 서비스는 피사체 판별, 불량품 검사, 자율주행 등에 이용되고 있으며, 특히 Deep Convolutional Neural Network (DCNN)은 이미지의 특색을 파악하는 데 뛰어난 성능을 보여준다. 하지만, 이미지의 크기가 커지고, 신경망이 깊어짐에 따라 연산 처리에 있어 낮은 데이터 지역성과 빈번한 메모리 참조를 야기했다. 이에 따라, 기존의 계층적 시스템 구조는 DCNN 을 scalable 하고 빠르게 처리하는 데 한계를 보인다. 본 연구에서는 DCNN 의 scalable 하고 빠른 처리를 위해 3 차원 메모리 구조의 Processing-In-Memory (PIM) 가속기를 제안한다. 이를 위해 기존 3 차원 메모리인 Hybrid Memory Cube (HMC)에 하드웨어 및 소프트웨어 모듈을 추가로 구성하였다. 구체적으로, Processing Element (PE)간 데이터를 공유할 수 있는 공유 캐시 및 소프트웨어 스택, 파이프라인화된 곱셈기 및 듀얼 프리페치 버퍼를 구성하였다. 이를 유명 DCNN 알고리즘 LeNet, AlexNet, ZFNet, VGGNet, GoogleNet, RestNet 에 대해 성능 평가를 진행한 결과 기존 HMC 대비 40.3%의 속도 향상을 29.4%의 대역폭 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.